• Title/Summary/Keyword: demineralization

Search Result 169, Processing Time 0.023 seconds

Evaluation of Remineralization Effects on Enamel Demineralization by Anti-cariogenic Agents using Quantitative Light-induced Fluorescence-digital (QLF-D) in vitro (유치 및 영구치에서 QLF를 이용한 항우식 제품의 재광화 효과 비교)

  • Lee, Kkotnim;Kim, Miae;Hwang, Inkyung;Park, Jihyun;Mah, Yonjoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.43 no.4
    • /
    • pp.391-400
    • /
    • 2016
  • The purpose of this study was to evaluate the difference of remineralization effects of various anti-cariogenic toothpastes on artificial carious lesions in primary and permanent teeth using quantitative light-induced fluorescence-digital (QLF-D) system. Sound human primary (n = 48) and permanent teeth (n = 48) were randomly divided into following groups : control group (Group 1), fluoride toothpaste (Group 2), functionalized tricalcium phosphate (fTCP) + fluoride toothpaste (Group 3), and casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) toothpaste (Group 4). Specimens were prepared by exposure in a demineralizing solution and then treated using the different toothpastes twice daily during 14 days. All specimens were analyzed with the QLF-D system. QLF data analysis indicated three different toothpastes showed significant remineralizing effects compared to Group 1 in both primary and permanent teeth. Also, the remineralizing effects in Group 3 and 4 were significantly higher than in Group 2. This study suggested that the toothpastes containing fTCP + fluoride and CPP-ACP have the significant anti-cariogenic effects on enamel demineralization in both primary and permanent teeth, and QLF-D is an useful device to assess the incipient carious lesion and remineralization effects of the anti-cariogenic materials quantitatively. Therefore, clinicians can consider the QLF-D system for the evaluation of demineralization and remineralization in primary and permanent teeth.

COMPARATIVE STUDY ON THE RATE OF DENTAL ENAMEL DEMINERALIZATION USING A QLF (Quantitative Light-induced Fluorescence를 이용한 법랑질 탈회 속도에 관한 비교 연구)

  • Lee, Chang-Keun;Yoo, Seung-Hoon;Kim, Jong-Soo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.3
    • /
    • pp.506-515
    • /
    • 2004
  • The objective of this study was to compare the rate of in vitro demineralization of bovine permanent (BP), human deciduous (HD) and human permanent (HP) enamel. Twenty aye flattened and polished enamel samples for each group (BP, HD, HP) were immersed in a demineralizing solution (0.1 mol/L lactic acid, 0.2% Carbopol 907, and 50% saturated hydroxyapatite) for 1, 2, 4 or 8 days. All 25 samples from each group were subjected to Quantitative light induced fluorescence analysis (QLF) and 5 samples from each group were randomly selected for Transverse Microradiography analysis (TMR). Integrated mineral loss (IML) and lesion depth (LD) were determined by TMR. The fluorescence radiance (FR) of sound enamel $(FR_S)$, demineralized enamel $(FR_D)$ were determined by QLF and FR ratio $(FR_D/FR_S)$ was calculated. Bovine enamel samples showed significant correlation between FR ratio and lesion depth(p<0.05) and deciduous enamel samples does not showed significant correlation between FR ratio and lesion depth(p>0.05). Permanent enamel samples showed significant correlation between FR ratio and lesion depth(p<0.05) The constant of demineralization time between FR ratio from regression analysis were as follows: bovine enamel was -4.643(p<0.05) deciduous enamel was -5.421(p<0.05) and permanent enamel was -4.435(p<0.05).

  • PDF

The effect of varnish fluoride on the acid resistance and the remineralization of the enamel (불소바니쉬가 법랑질의 내산성 및 재광화에 미치는 영향)

  • Cho, Min-Jung;Shim, Hyung-Soon;Lee, Hyang-Nim;Kim, Seung-Hee;Park, Ji-Il;Kim, Eun-Mi;Ha, Myung-Ok
    • Journal of Korean society of Dental Hygiene
    • /
    • v.9 no.4
    • /
    • pp.740-752
    • /
    • 2009
  • Objectives : This study was carried out to examine the effect of varnish fluoride and APF gel on the acid resistance and the remineralization of the enamel. Methods : At first, the microhardness changes of enamel surface were measured after demineralizing the fluoride treated tooth surface. Next, the changes were measured after fluoride application to the demineralized enamel surface. Results : 1. Acid resistance was higher in varnish fluoride groups than APF gel groups and the difference was significant(p<0.001). 1) Varnish fluoride groups Microhardness of enamel surface showed $297.76{\pm}9.89$ after fluoride treatment and $260.90{\pm}28.67$ after drmineralization. The changes of Vickers hardness number(VHN) were $-36.86{\pm}27.30$. 2) APF gel groups Microhardness of enamel surface showed $298.79{\pm}17.28$ after fluoride treatment and $43.75{\pm}18.58$ after demineralization The changes of VHN were $-255.04{\pm}21.31$. 2. No significant changes were surveyed in both varnish fluoride groups and APF gel groups as for remineralization of enamel(p>0.05). 1) Varnish fluoride groups Microhardness of enamel surface showed $46.58{\pm}15.42$ after demineralization and $46.61{\pm}15.70$ after fluoride treatment. The changes of VHN were $0.02{\pm}3.75$. 2) APF gel groups Microhardness of enamel surface showed $47.13{\pm}19.31$ after demineralization and $42.59{\pm}16.12$ after fluoride treatment. The changes of VHN were $-4.54{\pm}5.06$. Conclusions : Varnish fluoride showed higher acid resistance than APF gel, however both of them were observed to have no effect on the remineralization of the enamel.

  • PDF

THE DYNAMIC CHANGE OF ARTIFICIALLY DEMINERALIZED ENAMEL BY DEGREE OF SATURATION OF REMINERALIZATION SOLUTION AT pH 4.3 (pH 4.3에서 재광화 용액의 포화도에 따른 인공 탈회된 법랑질의 동력학적 변화)

  • Yi, Ji-Sook;Roh, Bung-Duk;Shin, Su-Jung;Lee, Yoon;Gong, Hyung-Kyu;Lee, Chan-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.1
    • /
    • pp.20-29
    • /
    • 2009
  • The purpose of this study is to observe and compare the dynamic change of artificially demineralized enamel by remineralization solutions of different degrees of saturation at pH 4.3. In this study, 30 enamel specimens were demineralized artificially by lactic acid buffered solution. Each of 10 specimens was immersed in pH 4.3 remineralization solution of three different degrees of saturation (0.22, 0.30, 0.35) for 10 days. After demineralization and remineralization, images were taken by a polarizing microscope (${\times}100$). The density of lesion were determined from images taken after demineralization and remineralization. During remineralization process, mineral deposition and mineral loss occurred at the same time. After remineralization, total mineral amount and width of surface lesion increased in all groups. The higher degree of saturation was, the more mineral deposition occurred in surface lesion and the amount of mineral deposition was not much in subsurface lesion. Total demineralized depth increased in all groups.

Evaluation of Acid Resistance of Demineralized Dentin after Silver Diamine Fluoride and Potassium Iodide Treatment (Silver Diamine Fluoride와 요오드화 칼륨 도포 후 변화하는 탈회 상아질의 내산성 평가)

  • Haesong, Kim;Juhyun, Lee;Siyoung, Lee;Haeni, Kim;Howon, Park
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.4
    • /
    • pp.392-401
    • /
    • 2022
  • This study investigated the effects of silver diamine fluoride (SDF) and potassium iodide (KI) treatments on the acid resistance of dentin exposed to secondary caries. Sixteen bovine dentin specimens with artificially induced caries were assigned to the following four groups: untreated negative control, untreated positive control, SDF-treated (SDF), and SDF and KI-treated (SDFKI). Multispecies cariogenic biofilms containing Streptococcus mutans, Lactobacillus casei, and Candida albicans were cultured on the specimens for 28 days, except for the negative control group. Specimens from the negative control group were stored in phosphate-buffered saline for that period. After a cariogenic biofilm challenge, the degree of demineralization was evaluated using micro-computed tomography (micro-CT). As a result of data analysis using micro-CT, the demineralization depths of the negative control, positive control, SDF, and SDFKI groups were 149.0 ± 7 ㎛, 392.0 ± 11 ㎛, 206.0 ± 20 ㎛, and 230.0 ± 31 ㎛, respectively. The degree of demineralization was significantly reduced in the SDF and SDFKI groups compared with that in the untreated positive control group. There were no significant differences between the SDF and SDFKI groups. This study confirmed that SDF and SDFKI treatments increase the acid resistance of dentin to secondary caries. KI did not significantly affect the caries-arresting effect of the SDF.

Tensile Strengths of Demineralized Dentin derived from Self-Priming Adhesives (Self-Priming Adhesives를 침투시킨 탈회 상아질의 인장강도)

  • Lee, Hye-Yun;Yoon, Mi-Ran;Lee, Rin;Lee, Jeong;Lee, Kwang-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.2
    • /
    • pp.181-191
    • /
    • 2006
  • The objectives of this study were to evaluate the tensile strength of resin-infiltrated demineralized dentin according to the demineralization time, and to evaluate the tensile strength of hybrid layer that is formed by infiltrating different priming adhesives or primer/adhesive into demineralizd dentin matrix. Seventy five hour-glass shaped dentin specimens were prepared in mid-coronal dentin from extracted human molars. Thirty specimens were distributed into three groups according to demineralization time - 2 hours, 4 hours and 8 hours. Each specimen was placed in primer/adhesive of All-Bond 2 for 5 hours of infiltration. Another forty-five specimens of them were demineralized in 37% phosphoric acid for 4 hours. They were randomly assigned to three experimental groups - AB, SB and OS - to designate All-Bond 2, Single Bond and One-Step. Each specimen was placed in one of three different adhesives for 5 hours of infiltration. The specimens were visible light-cured for 5 minutes, and then stored for 24 hours in distilled water at $37^{\circ}C$. After that, microtensile bond strength for each specimen was measured, and the fractured surfaces were then observed by SEM. The data were statistically analysed by one-way ANOVA and Tukey's multiple comparison test and Bonferroni's multiple comparison test. The results were as follows; 1. Tensile strength of the group demineralized for 4 hours was significantly higher than that of groups demineralized for 2 hours and 8 hours (P < .01). 3. Tensile strength of the AB group was significantly higher than that of the SB group and OS group (P < .01).

Reuses Of Wash Water Effluents Of The Ion-Exchanger Units Of Water Demineralization Plant For Economic And Environmental Benefits

  • Miah, Raisuddin
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.799-806
    • /
    • 1995
  • In industrial field, a large volume of regenerants (acid and caustic soda) and their washing effluents are regularly disposed off from the water demineralization plant during regeneration of the ion-exchanger units. Of these waste effluents, a part of the wash water discharged from the single bed Anion and Mixed Bed units can be utilized at a certain stage of their washing cycles when its conductivity is fallen down and becomes considerably less than that of the input raw water. The main aim of this specific waste effluent utilization is to dilute the TDS concentration of the input raw water (fed into the single bed ion-exchanger units) by blending. The achievement is the increase of the longevity of the production cycles of the I.E. units along with the improvement of the production quality and decrease of the regeneration frequencies. As a result, regenerant consumption would be saved because of the reduction of ionic load in feed water which will ultimately reduce the water purification cost. At the same time, the environment pollution will also be protected to a considerable extent. This operational measure is quite effective and useful specially where high TDS water is demineralized only by single bed ion-exchangers. In such case, the water treatment plant is very often found to suffer from both production quality and quantity in addition to carrying out of random and restless regenerations. Proper reuses of the aforesaid wash water effluents of the Anion and MB units excellently minimizes the difficulties experienced in practice. This paper contains the utilities and techniques of reuses of the different kinds of waste effluents of the industrial water treatment plant in addition to the specific reuses of the post-regeneration wash waters of the Anion and MB ion-exchanger units.

  • PDF

THE INFLUENCE OF pH ON REMINERALIZATION OF ARTIFICIAL DENTAL CARIES (법랑질 인공우식의 재광화에 미치는 pH의 영향에 관한 연구)

  • Kim, Min-Kyung;Kum, Kee-Yeon;Lee, Chan-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.193-208
    • /
    • 1997
  • Much evidence now exists from both in vivo and in vitro studies to support the claim that small caries lesions can 'heal'. But, there are still different views on the mechanism of remineralization. So in order to find the best condition for the remineralization of incipient dental caries in maximum efficient way, the author conducted the experiment which reveals the effect of pH on remineralization. 40 specimens of sound permanent teeth without demineralization or crack, $100{\mu}m$ in thickness, were immersed in lactic acid buffered demineralization solution for 4 days. Dental caries with surface zone and subsurface lesion were artificially produced. All specimens were immersed in lactic acid buffered remineralization solution of pH 4.0, 4.5, 5.0, 5.5 containg fluoride ion for 10 days. The results were obtaind by observing the specimens for every 10 days under polarized microscopy at x25. 1. Remineralization did not occur in entire depth of body of lesion at given degree of saturation and concentration of fluoride ion. 2. The pattern of remineralization has increased according to increase of pH. So it can be concluded that supersaturated solution with fluoride ion can be affected by pH in remineralization of enamel, and pH 5.5 seems to be very effective in remineralization of deep and surface zone of dental caries. However, more complex factors exist in achieving complete remineralization and further continuous researches are needed to clarify the factors.

  • PDF

Elemental analysis of caries-affected root dentin and artificially demineralized dentin

  • Sung, Young-Hye;Son, Ho-Hyun;Yi, Keewook;Chang, Juhea
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.4
    • /
    • pp.255-261
    • /
    • 2016
  • Objectives: This study aimed to analyze the mineral composition of naturally- and artificially-produced caries-affected root dentin and to determine the elemental incorporation of resin-modified glass ionomer (RMGI) into the demineralized dentin. Materials and Methods: Box-formed cavities were prepared on buccal and lingual root surfaces of sound human premolars (n = 15). One cavity was exposed to a microbial caries model using a strain of Streptococcus mutans. The other cavity was subjected to a chemical model under pH cycling. Premolars and molars with root surface caries were used as a natural caries model (n = 15). Outer caries lesion was removed using a carbide bur and a hand excavator under a dyeing technique and restored with RMGI (FujiII LC, GC Corp.). The weight percentages of calcium (Ca), phosphate (P), and strontium (Sr) and the widths of demineralized dentin were determined by electron probe microanalysis and compared among the groups using ANOVA and Tukey test (p < 0.05). Results: There was a pattern of demineralization in all models, as visualized with scanning electron microscopy. Artificial models induced greater losses of Ca and P and larger widths of demineralized dentin than did a natural caries model (p < 0.05). Sr was diffused into the demineralized dentin layer from RMGI. Conclusions: Both microbial and chemical caries models produced similar patterns of mineral composition on the caries-affected dentin. However, the artificial lesions had a relatively larger extent of demineralization than did the natural lesions. RMGI was incorporated into the superficial layer of the caries-affected dentin.

Preparation and antimicrobial assay of ceramic brackets coated with TiO2 thin films

  • Cao, Shuai;Wang, Ye;Cao, Lin;Wang, Yu;Lin, Bingpeng;Lan, Wei;Cao, Baocheng
    • The korean journal of orthodontics
    • /
    • v.46 no.3
    • /
    • pp.146-154
    • /
    • 2016
  • Objective: Different methods have been utilized to prevent enamel demineralization and other complications during orthodontic treatment. However, none of these methods can offer long-lasting and effective prevention of orthodontic complications or interventions after complications occur. Considering the photocatalytic effect of $TiO_2$ on organic compounds, we hoped to synthesize a novel bracket with a $TiO_2$ thin film to develop a photocatalytic antimicrobial effect. Methods: The sol-gel dip coating method was used to prepare $TiO_2$ thin films on ceramic bracket surfaces. Twenty groups of samples were composed according to the experimental parameters. Crystalline structure and surface morphology were characterized by X-ray diffraction and scanning electron microscopy, respectively; film thickness was examined with a surface ellipsometer. The photocatalytic properties under ultraviolet (UV) light irradiation were analyzed by evaluating the degradation ratio of methylene blue (MB) at a certain time. Antibacterial activities of selected thin films were also tested against Lactobacillus acidophilus and Candida albicans. Results: Films with 5 coating layers annealed at $700^{\circ}C$ showed the greatest photocatalytic activity in terms of MB decomposition under UV light irradiation. $TiO_2$ thin films with 5 coating layers annealed at $700^{\circ}C$ exhibited the greatest antimicrobial activity under UV-A light irradiation. Conclusions: These results provide promising guidance in prevention of demineralization by increasing antimicrobial activities of film coated brackets.