• Title/Summary/Keyword: demand strength

Search Result 716, Processing Time 0.023 seconds

Design of the Green Wall System considering Distribution Effect of Earth Pressure by Soil Nail (네일의 토압분담 효과를 고려한 Green Wall 시스템의 설계)

  • Park, Si-Sam;Cho, Sung-Han;Yoo, Chan-Ho;Kim, Hong-Taek;Kim, Yong-Yeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1038-1045
    • /
    • 2006
  • The Green Wall is highest eco-system among a segmental retaining wall systems. Recently, the demand of high segmental retaining wall (SRW) is increased in domestic. The soil nailing system is applied in order to maintain the high SRW stability for steeper slope. However, the proper design approach that can consider the earth pressure reduction effects in soil nailing system has not been proposed. This study was performed to introduce the design case by 'Two-Body Translation mechanism' to be able to consider distribution of earth pressure in the soil nailing when designing the green wall using soil nailing system. Also, this study attempts to evaluate the earth pressure change when advanced soil nailing system is constructed using $FLAC^{2D}$ ver. 3.30 program and 'Two-Body Translation mechanism'. Also in this study, various parametric studies using numerical methods as shear strength reduction (SSR) technique and limit equilibrium technique were carried out. In the parametric study, the length ratio and the bond ratio of the soil nailing were changed to identify the earth pressure reduction effect of the retaining wall reinforced by soil nailing.

  • PDF

Analysis of Computer Simulated and Field Experimental Results of LoRa Considering Path Loss under LoS and NLoS Environment (LoS 및 NLoS 환경에서의 경로 손실을 고려한 LoRa의 모의실험 및 실측 결과 분석)

  • Yi, Dong Hee;Kim, Suk Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.2
    • /
    • pp.444-452
    • /
    • 2017
  • Recently, a demand of Internet-of-things (IoT) rises dramatically and an interest in Low Power Wide Area (LPWA) grows larger accordingly. In this paper, performance in LoRa which is included in LPWA standard is analyzed. Particularly, after measuring Received Signal Strength Indication (RSSI) of received signal on Line-of-sight (LoS) and Non-line-of-sight (NLoS) environment and it is compared with RSSI which theoretical path loss model is applied to. Among many path loss models, the simulation for theoretical RSSI use Log-distance, Two-ray model and Okumura-Hata model that is based on the test database. Consequently, the result of Okumura-Hata model is the most similar with the measured RSSI. When a network based on LoRa is built, this result can used to decide optimal node arrangement.

A new steel panel zone model including axial force for thin to thick column flanges

  • Mansouri, Iman;Saffari, Hamed
    • Steel and Composite Structures
    • /
    • v.16 no.4
    • /
    • pp.417-436
    • /
    • 2014
  • During an earthquake, steel frame columns can be subjected to high axial forces combined with inelastic rotation demand resulting from story drift. Generally, the whole beam or component can be represented with one element. In elasto-plastic analysis, subdivision is necessary if the plastic deformation occurs within two ends of beams. If effects of the joint panel are necessarily considered in the analysis, the joint panel should be represented with an independent element. It is a special element to represent the shear deformation of the joint panel in the beam-column connection zone. Several analytical models for panel zone (PZ) behavior exist, in terms of shear force-shear distortion relationships. Among these models, the Krawinkler PZ model is the most popular one which is used in the AISC code. Some studies have pointed out that Krawinkler's model gives good results for the range of thin to medium column flanges thickness. This paper, introduces a new model to estimate the response of shear force-shear distortion for the PZ including column axial force. The model is applicable to both thin and thick column flange. To achieve an appropriate PZ mathematical model first, the effects of PZ strength and stiffness on connection response are parametrically studied using finite element models. More than one thousand and four-hundred beam-column connections are included in the parametric study, with varied parameters; then based on analytical results a simple mathematical model is presented. A comparison between the results of proposed method herein with FE analyses shows the average error especially in thick column flange is significantly reduced which demonstrates the accuracy, efficiency, and simplicity of the proposed model.

Numerical study on contact behavior of TSL (Thin Spray-on Liner) (접촉 거동을 고려한 TSL(Thin Spray-on Liner)의 수치해석 연구)

  • Lee, Chulho;Chang, Soo-Ho;Lee, Kicheol;Kim, Dongwook
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.6
    • /
    • pp.665-674
    • /
    • 2015
  • A TSL (Thin Spray-on Liner) which consists of polymers has a higher initial strength, faster construction time and higher waterproofing performance than the conventional cementitious shotcrete. Main supporting mechanism of TSL is the adhesion and tensile strength which is distinct from the conventional shotcrete. Even though highly in demand due to its outstanding characteristics, TSL is not yet well-known support material. In this study, to evaluate contact behavior of TSL, numerical analysis was performed with comparing result from laboratory tests. From the analysis, cohesive behavior at the contact surface between TSL and rock can be evaluated by using combination of cohesive and the damage model. In addition, results show that the cohesive stiffness controled slope between force and displacement, the fracture energy controled level of force at the contact.

Elastic Seismic Design of Steel Highrise Buildings in Regions of Moderate Seismicity (중진대 철골조 초고층 건물의 탄성내진설계)

  • Lee, Cheol Ho;Kim, Seon Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.553-562
    • /
    • 2006
  • Lateral loading due to wind or earthquake is a major factor that affects the design of high-rise buildings. This paper highlights the problems associated with the seismic design of high-rise buildings in regions of strong wind and moderate seismicity. Seismic response analysis and performance evaluation were conducted for wind-designed concentrically braced steel high-rise buildings in order to check the feasibility of designing them per elastic seismic design criterion (or strength and stiffness solution) in such regions. Review of wind design and pushover analysis results indicated that wind-designed high-rise buildings possess significantly increased elastic seismic capacity due to the overstrength resulting from the wind serviceability criterion. The strength demand-to-capacity study showed that, due to the wind design overstrength, high-rise buildings with a slenderness ratio of larger than four or five can elastically withstand even the maximum considered earthquake (MCE) with the seismic performance level of immediate occupancy under the limited conditions of this study. A step-by-step seismic design procedure per the elastic criterion that is directly usable for practicing design engineers is also recommended.

Experimental research on the propagation of plastic hinge length for multi-scale reinforced concrete columns under cyclic loading

  • Tang, Zhenyun;Ma, Hua;Guo, Jun;Xie, Yongping;Li, Zhenbao
    • Earthquakes and Structures
    • /
    • v.11 no.5
    • /
    • pp.823-840
    • /
    • 2016
  • The plastic hinge lengths of beams and columns are a critical demand parameter in the nonlinear analysis of structures using the finite element method. The numerical model of a plastic hinge plays an important role in evaluating the response and damage of a structure to earthquakes or other loads causing the formation of plastic hinges. Previous research demonstrates that the plastic hinge length of reinforced concrete (RC) columns is closely related to section size, reinforcement ratio, reinforcement strength, concrete strength, axial compression ratio, and so on. However, because of the limitations of testing facilities, there is a lack of experimental data on columns with large section sizes and high axial compression ratios. In this work, we conducted a series of quasi-static tests for columns with large section sizes (up to 700 mm) and high axial compression ratios (up to 0.6) to explore the propagation of plastic hinge length during the whole loading process. The experimental results show that besides these parameters mentioned in previous work, the plastic hinge of RC columns is also affected by loading amplitude and size effect. Therefore, an approach toward considering the effect of these two parameters is discussed in this work.

Influence of Flowability of Ceramic Tile Granule Powders on Sintering Behavior of Relief Ceramic Tile (과립분말 유동성 변화가 부조세라믹타일의 소결거동에 미치는 영향)

  • Shin, Cheol;Choi, Jung-Hoon;Kim, Jung-Hun;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.550-557
    • /
    • 2020
  • Used in the ceramic tile market as a representative building material, relief ceramic tile is showing increased demand recently. Since ceramic tiles are manufactured through a sintering process at over 1,000 ℃ after uniaxial compression molding by loading granule powders into a mold, it is very important to secure the flowability of granular powders in a mold having a relief pattern. In this study, kaolin, silica, and feldspar are used as starting materials to prepare granule powders by a spray dryer process; the surface of the granule powders is subject to hydrophobic treatment with various concentrations of stearic acid. The effect on the flowability of the granular powder according to the change of stearic acid concentration is confirmed by measuring the angle of repose, tap density, and compressibility, and the occurrence of cracks in the green body produced in the mold with the relief pattern is observed. Then, the green body is sintered by a fast firing process, and the water absorption, flexural strength, and durability are evaluated. The surface treatment of the granule powders with stearic acid improves the flowability of the granule powders, leading to a dense microstructure of the sintered body. Finally, the hydrophobic treatment of the granule powders makes it possible to manufacture relief ceramic tiles having a flexural strength of 292 N/cm, a water absorption of 0.91 %, and excellent mechanical durability.

Exoskeleton Based on Counterbalance Mechanism for Arm Strength Assistance (중력보상장치 기반의 근력보조 외골격 장치)

  • Lee, Won Bum;Song, Jae-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.469-475
    • /
    • 2017
  • Workers in industrial fields are highly exposed to accidents or injuries caused by long working hours. An exoskeleton that is able to support the arm muscles of the worker and thereby reduce the probability of an accident and enhance working efficiency could be a solution to this problem. However, existing exoskeletons demand the use of high-priced sensors and motors, which makes them difficult to use in industrial fields. To solve this problem, we developed an arm assisting exoskeleton that consists only of mechanical components without any electronic sensors or motors. The exoskeleton follows the movement of the human arm by shoulder joint and ankle joint. In addition, counterbalance mechanisms are installed on the exoskeleton to support arm strength. The experimental validation of the exoskeleton was conducted using an EMG sensor, confirming the performance of the exoskeleton.

ANALYSIS OF EFFECTIVE NUGGET SIZE BY INFRARED THERMOGRAPHY IN SPOT WELDMENT

  • Song, J.H.;Noh, H.G.;Akira, S.M.;Yu, H.S.;Kang, H.Y.;Yang, S.M.
    • International Journal of Automotive Technology
    • /
    • v.5 no.1
    • /
    • pp.55-59
    • /
    • 2004
  • Spot welding is a very important and useful technology in fabrication of thin sheet structures such as the parts in an automobile. However, because the fatigue strength of the spot welding point is considerably lower than that of the base metal due to stress concentration at the nugget edge, the nugget size must be estimated to evaluate a reasonable fatigue strength at a spot welded lap joint. So far, many investigators have experimentally studied the estimation of fatigue strengths of various spot weldments by using a destructive method. However, these destructive methods poses problems so testing of weldments by these methods are difficult. Furthermore, these methods cannot be applied to a real product, and are time and cost consuming, as well. Therefore, there has been a strong, continual demand for the development of a nondestructive method for estimating nugget size. In this study, the effective nugget size in spot weldments have been analyzed by using thermoelastic stress analysis adopting infrared thermography. Using the results of the temperature distribution obtained by analysis of the infared stress due to adiabatic heat expansion under sinusoidal wave stresses, the effective nugget size in spot welded specimens were estimated. To examine the evaluated effective nugget size in spot weldments, it was compared with the results of microstructure observation from a 5% Nital etching test.

Development of Materials Strength Database (재료강도특성(材料强度特性) 데이터베이스 구축(構築))

  • Kim, Ik-Cheol
    • Journal of Information Management
    • /
    • v.23 no.1
    • /
    • pp.1-21
    • /
    • 1992
  • The importance of factual database is becoming larger and larger as the application of computer in design and processing is increasing. To follow up and support this demand and tendency, construction of factual database is necessary. The goal of this research project is to construct a factual database about the creep properties of high temperature materials. A factual database on the creep properties of 25 kinds of high temperature materials was constructed. Domestically produced data which were appeared in journals, theses, reports, etc., were collected and used as a input data source. Evaluation on these collected data will be done during the 2nd year of this project. In addition to this database construction, an experimental facility to produce creep crack propagation data was set up.

  • PDF