• Title/Summary/Keyword: delivery delay

Search Result 392, Processing Time 0.019 seconds

Performance Improvement of Delay-Tolerant Networks with Mobility Control under Group Mobility

  • Xie, Ling Fu;Chong, Peter Han Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2180-2200
    • /
    • 2015
  • This paper considers mobility control to improve packet delivery in delay-tolerant networks (DTNs) under group mobility. Based on the group structure in group mobility, we propose two mobility control techniques; group formation enforcement and group purposeful movement. Both techniques can be used to increase the contact opportunities between groups by extending the group's reachability. In addition, they can be easily integrated into some existing DTN routing schemes under group mobility to effectively expedite the packet delivery. This paper is divided into 2 parts. First, we study how our proposed mobility control schemes reduce the packet delivery delay in DTNs by integrating them into one simple routing scheme called group-epidemic routing (G-ER). For each scheme, we analytically derive the cumulative density function of the packet delivery delay to show how it can effectively reduce the packet delivery delay. Then, based on our second proposed technique, the group purposeful movement, we design a new DTN routing scheme, called purposeful movement assisted routing (PMAR), to further reduce the packet delay. Extensive simulations in NS2 have been conducted to show the significant improvement of PMAR over G-ER under different practical network conditions.

A Study on the Damage of Delay in Delivery in Maritime Code of P. R. China (중국(中國) 해상법상(海商法上) 인도지연손해(引渡遲延損害)에 관한 소고(小考))

  • Ma, Yanqiu;Hwang, Seok-Kap
    • Journal of the Korean Institute of Navigation
    • /
    • v.25 no.2
    • /
    • pp.195-205
    • /
    • 2001
  • It has been over seven years since Maritime Code of the Peoples Republic of China (hereinafter called the Code) came into force on July 1st 1993. During this period it has played a very important roll in governing Chinas ocean shipping. However, owing to the defects of the Code, many problems have arisen in the performance of the Code, among which is the problem related to delay in delivery. Therefore, it is necessary and inevitable to revise the Code. This study is limited to a rough study on the regulations related to delay in delivery in the Code, such as the definition of delay in delivery, the carriers responsibility for delay in delivery, the carriers exemption from responsibility for delay in delivery, the limitation of responsibility, the procedures of claims for delay in delivery and the difference of the Code from the Korea Commercial Law, the Hague Rules, the Hague-Visby Rules and the Hamburg Rules. Furthermore, some defects in the Code are pointed out and suggestions are provided for the revision of the Code.

  • PDF

Buffer Scheme Optimization of Epidemic Routing in Delay Tolerant Networks

  • Shen, Jian;Moh, Sangman;Chung, Ilyong;Sun, Xingming
    • Journal of Communications and Networks
    • /
    • v.16 no.6
    • /
    • pp.656-666
    • /
    • 2014
  • In delay tolerant networks (DTNs), delay is inevitable; thus, making better use of buffer space to maximize the packet delivery rate is more important than delay reduction. In DTNs, epidemic routing is a well-known routing protocol. However, epidemic routing is very sensitive to buffer size. Once the buffer size in nodes is insufficient, the performance of epidemic routing will be drastically reduced. In this paper, we propose a buffer scheme to optimize the performance of epidemic routing on the basis of the Lagrangian and dual problem models. By using the proposed optimal buffer scheme, the packet delivery rate in epidemic routing is considerably improved. Our simulation results show that epidemic routing with the proposed optimal buffer scheme outperforms the original epidemic routing in terms of packet delivery rate and average end-to-end delay. It is worth noting that the improved epidemic routing needs much less buffer size compared to that of the original epidemic routing for ensuring the same packet delivery rate. In particular, even though the buffer size is very small (e.g., 50), the packet delivery rate in epidemic routing with the proposed optimal buffer scheme is still 95.8%, which can satisfy general communication demand.

Analytical Framework for Promoting Customer Participation in Benefit Delay Type Services

  • Cho, Myung-Rae
    • The Journal of Economics, Marketing and Management
    • /
    • v.6 no.1
    • /
    • pp.9-16
    • /
    • 2018
  • Purpose - Benefit delay type services have a characteristic of benefit delay that does not immediately appear at the time of delivery of service. Due to a characteristic of benefit delay, the customer's participation in the service delivery system is hindered, and the quality of service declines. As a result, customer satisfaction would be reduced. The purpose of this study is to construct an analytical framework to analyze a mechanism that promotes customer participation in benefit delay type services. Research design, data, and Methodology - Existing research has considered only the performance of service companies to enhance the quality of service and customer satisfaction. This study focused on customer participation as a factor affecting the quality of service and customer satisfaction and attempted to construct an analytical framework based on a theoretical perspective of motivational research. Results - By adopting the motivation theory, this research derived three concepts, the possibility of gaining benefits, the emotional experience, and the desire of benefit. And motivation is created when the three factors interact with each other. Conclusions - This paper has constructed an analytical framework for analyzing factors that promote customer participation in the benefit delay service and finally has proposed case study for further research.

HESnW: History Encounters-Based Spray-and-Wait Routing Protocol for Delay Tolerant Networks

  • Gan, Shunyi;Zhou, Jipeng;Wei, Kaimin
    • Journal of Information Processing Systems
    • /
    • v.13 no.3
    • /
    • pp.618-629
    • /
    • 2017
  • Mobile nodes can't always connect each other in DTNs (delay tolerant networks). Many DTN routing protocols that favor the "multi-hop forwarding" are proposed to solve these network problems. But they also lead to intolerant delivery cost so that designing a overhead-efficient routing protocol which is able to perform well in delivery ratio with lower delivery cost at the same time is valuable. Therefore, we utilize the small-world property and propose a new delivery metric called multi-probability to design our relay node selection principles that nodes with lower delivery predictability can also be selected to be the relay nodes if one of their history nodes has higher delivery predictability. So, we can find more potential relay nodes to reduce the forwarding overhead of successfully delivered messages through our proposed algorithm called HESnW. We also apply our new messages copies allocation scheme to optimize the routing performance. Comparing to existing routing algorithms, simulation results show that HESnW can reduce the delivery cost while it can also obtain a rather high delivery ratio.

On the Heterogeneous Postal Delivery Model for Multicasting

  • Sekharan, Chandra N.;Banik, Shankar M.;Radhakrishnan, Sridhar
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.536-543
    • /
    • 2011
  • The heterogeneous postal delivery model assumes that each intermediate node in the multicasting tree incurs a constant switching time for each message that is sent. We have proposed a new model where we assume a more generalized switching time at intermediate nodes. In our model, a child node v of a parent u has a switching delay vector, where the ith element of the vector indicates the switching delay incurred by u for sending the message to v after sending the message to i-1 other children of u. Given a multicast tree and switching delay vectors at each non-root node 5 in the tree, we provide an O(n$^{\frac{5}{2}}$) optimal algorithm that will decide the order in which the internal (non-leaf) nodes have to send the multicast message to its children in order to minimize the maximum end-to-end delay due to multicasting. We also show an important lower bound result that optimal multicast switching delay problem is as hard as min-max matching problem on weighted bipartite graphs and hence O(n$^{\frac{5}{2}}$) running time is tight.

Adaptive Duty Cycling MAC Protocols Using Closed-Loop Control for Wireless Sensor Networks

  • Kim, Jae-Hyun;Kim, Seog-Gyu;Lee, Jai-Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.105-122
    • /
    • 2011
  • The fundamental design goal of wireless sensor MAC protocols is to minimize unnecessary power consumption of the sensor nodes, because of its stringent resource constraints and ultra-power limitation. In existing MAC protocols in wireless sensor networks (WSNs), duty cycling, in which each node periodically cycles between the active and sleep states, has been introduced to reduce unnecessary energy consumption. Existing MAC schemes, however, use a fixed duty cycling regardless of multi-hop communication and traffic fluctuations. On the other hand, there is a tradeoff between energy efficiency and delay caused by duty cycling mechanism in multi-hop communication and existing MAC approaches only tend to improve energy efficiency with sacrificing data delivery delay. In this paper, we propose two different MAC schemes (ADS-MAC and ELA-MAC) using closed-loop control in order to achieve both energy savings and minimal delay in wireless sensor networks. The two proposed MAC schemes, which are synchronous and asynchronous approaches, respectively, utilize an adaptive timer and a successive preload frame with closed-loop control for adaptive duty cycling. As a result, the analysis and the simulation results show that our schemes outperform existing schemes in terms of energy efficiency and delivery delay.

A Comprehensive Analysis of the End-to-End Delay for Wireless Multimedia Sensor Networks

  • Abbas, Nasim;Yu, Fengqi
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2456-2467
    • /
    • 2018
  • Wireless multimedia sensor networks (WMSNs) require real-time quality-of-service (QoS) guarantees to be provided by the network. The end-to-end delay is very critical metric for QoS guarantees in WMSNs. In WMSNs, due to the transmission errors incurred over wireless channels, it is difficult to obtain reliable delivery of data in conjunction with low end-to-end delay. In order to improve the end-to-end delay performance, the system has to drop few packets during network congestion. In this article, our proposal is based on optimization of end-to end delay for WMSNs. We optimize end-to-end delay constraint by assuming that each packet is allowed fixed number of retransmissions. To optimize the end-to-end delay, first, we compute the performance measures of the system, such as end-to-end delay and reliability for different network topologies (e.g., linear topology, tree topology) and against different choices of system parameters (e.g., data rate, number of nodes, number of retransmissions). Second, we study the impact of the end-to-end delay and packet delivery ratio on indoor and outdoor environments in WMSNs. All scenarios are simulated with multiple run-times by using network simulator-2 (NS-2) and results are evaluated and discussed.

1-hop Data Traffic Reduction Method in Tactical Wireless Mobile Ad-Hoc Network based on MIL-STD-188-220C (MIL-STD-188-220C 기반 전술 무선 이동 Ad-Hoc 망에서 1-hop내 데이터 트래픽 감소 방법)

  • You, Ji-Sang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.15-24
    • /
    • 2008
  • The data delivery confirmation method of MIL-STD-188-220C, which is a tactical wireless mobile Ad-Hoc communication protocol, is that a source node requires the end-to-end ack from all destination nodes and the data-link ack from 1-hop neighboring destination nodes and relaying nodes, regardless of the hop distance from a source node to destination nodes. This method has the problem to degrade the whole communication network performance because of excessive data traffic due to the duplicate use of end-to-end ack and data-link ack, and the collision among end-to-end acks on the wireless network in the case of confirming a data delivery within an 1-hop distance. In order to solve this problem, this paper has proposed the method to perform the data delivery confirmation with the improvement of communication network performance through the data traffic reduction by achieving the reliable data delivery confirmation requiring the only data-link ack within an 1-hop distance. The effects of the proposed method are analyzed in the two aspects of the data delivery confirmation delay time and the data delivery confirmation success ratio.

Network Synchronization for Collaborative Work in Distributed Environment (분산 환경에서의 협업을 위한 네트워크 동기화 기법)

  • Song, Jung-Wook;Kwon, Yong-Moo
    • Journal of Information Technology Services
    • /
    • v.10 no.3
    • /
    • pp.203-212
    • /
    • 2011
  • In the every day life of the people, the Internet is widely used. Currently over 1.9 billion people have one or more email addresses and over 600 million people use the Facebook. People are collaborating via the Internet more and more. When people are collaborating through the Internet, the differences of the message delivery delay are the biggest problem that disturbs the collaborative work over the network. To solve the differences of the message delivery delay, we introduce the delay-gap method. An experimental code have been implemented and the efficiency of the delay-gap is presented through the results from the experiment that have many participants.