• Title/Summary/Keyword: delayed stem senescence

Search Result 8, Processing Time 0.027 seconds

Study on the yield and delayed stem senescence of soybean varieties in late sowing cultivation

  • Suzuki, Daisuke;Gunji, Kento;Higo, Masao;Isobe, Katsunori
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.201-201
    • /
    • 2017
  • Delayed stem senescence of soybean is a phenomenon of retarded leaf and stem yellowing, where plants maintain a high stem water content and remain chlorophyll in leaf and stem at maturity stage. This phenomenon was one of the most important physiological disease in Japanese soybean cultivation. The occurrence of delayed stem senescence was affected by sowing time. And the most of Japanese field, soybean seeds were sowed in June. June is the rainy season in Japan, and the soil water content of field become higher in this season. In this study, the effects of late sowing (July sowing) on the yield and the occurrence of delayed stem senescence in soybean cultivars Enrei, Tachinagaha and Ayakogane were examined from 2013 to 2015, in the experimental farm at Nihon University (Fujisawa-city, Kanagawa, Japan). The seeds of all cultivars were sowed in June (June-normal density plot) or July (July-normal density plot, July-high density plot and July-super high density plot) in field experiment. The pot experiments were carried out in 2014. In all cultivars, the yield of July-high density plot and July-super high density were higher than that of June normal density plot. And the yield of June-normal density plot was the same as that of July-normal density plot. In all cultivars, the occurrence of delayed stem senescence was increased by seeding in June sowing. And in July sowing plots, no significance difference in the occurrence of delayed stem senescence was observed among density plots. One of reason about the increasing the occurrence of delayed stem senescence in June-normal plot was the increasing of the damaged seeds by bean bugs. Add one of reason about the decreasing of the occurrence of delayed stem senescence of July plots was the decreasing of the amount of cytokinin supplied from root to top and water stress after the flowering time was improved compared with the June plot. In conclusion, the yield of Enrei, Tachinagaha and Ayakogane were not changed by changing the sowing time from June to July. In all cultivars, the occurrence of delayed stem senescence were decreasing by seeding in July.

  • PDF

The Rice FON1 Gene Controls Vegetative and Reproductive Development by Regulating Shoot Apical Meristem Size

  • Moon, Sunok;Jung, Ki-Hong;Lee, Do-Eun;Lee, Dong-Yeon;Lee, Jinwon;An, Kyungsook;Kang, Hong-Gyu;An, Gynheung
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.147-152
    • /
    • 2006
  • Most plant organs develop from meristems. Rice FON1, which is an ortholog of Clv1, regulates stem cell proliferation and organ initiation. The point mutations, fon1-1 and fon1-2, disrupt meristem balance, resulting in alteration of floral organ numbers and the architecture of primary rachis branches. In this study, we identified two knockout alleles, fon1-3 and fon1-4, generated by T-DNA and Tos17 insertion, respectively. Unlike the previously isolated point mutants, the null mutants have alterations not only of the reproductive organs but also of vegetative tissues, producing fewer tillers and secondary rachis branches. The mutant plants are semi-dwarfs due to delayed leaf emergence, and leaf senescence is delayed. SEM analysis showed that the shoot apical meristems of fon1-3 mutants are enlarged. These results indicate that FON1 controls vegetative as well as reproductive development by regulating meristem size.

Effects of Delayed Harvesting of Miscanthus spp. Risen in the Previous Year on its Current Year'S Yield and Growth Characteristics (전년도 생육 억새의 늦은 수확이 당년 생육특성과 수량에 미치는 영향)

  • Moon, Youn-Ho;Lee, Ji-Eun;Yu, Gyeong-Dan;Cha, Young-Lok;An, Gi Hong;Ahn, Joung Woong;Song, Yeon-Sang;Lee, Kyeong-Bo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.3
    • /
    • pp.215-221
    • /
    • 2016
  • This study examined the effects of delayed harvest of Miscanthus on its biomass yield and growth characteristics. The trial was conducted at a 5-year-old demonstration field, using Miscanthus sacchariflorus cv. Geodae 1 and Miscanthus ${\times}$ giganteus. Harvesting was carried out using a mower, baler, and bale picker driven by a 5-ton tractor. Harvesting dates were the $1^{st}$, $10^{th}$, and $17^{th}$ of April, which respectively corresponded with the first, mid, and last emerging dates of new shoots. The sequential changes in stem number due to delayed harvesting were investigated on April $29^{th}$, May $27^{th}$, July $22^{nd}$, and October $30^{th}$, which corresponded to the juvenile, mid, luxuriant, and senescence stem stages, respectively. Soil penetration resistance, biomass yield, and growth characteristics were investigated on October $30^{th}$. There was no difference in soil penetration resistance at a depth of 10 cm, but it increased at a depth of 20 cm in proportion to the delayed harvesting time. The sequential change in stem number due to delayed harvesting was greater in M. sacchariflorus cv. Geodae 1 than in M. ${\times}$ giganteus. In M. sacchariflorus cv. Geodae 1, which was harvested on the last emerging date of new shoots, the stem number was $169/m^2$ in the mid stage but decreased to $70/m^2$ in the luxuriant stage. The diameter of newly developed rhizomes, stem height, and biomass yield decreased in the two Miscanthus species due to delayed harvesting. The ratio of Miscanthus headings, which is a critical characteristic for landscape use, also decreased due to delayed harvesting. Heading of M. sacchariflorus cv. Geodae 1 was not observed in plots harvested on the mid and last emerging dates of new shoots.

The Relationship Between Green Stem Disorder and the Accumulation of Vegetative Storage Protein in Soybean

  • Zhang, Jiuning;Katsube-Tanaka, Tomoyuki;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2019.09a
    • /
    • pp.22-22
    • /
    • 2019
  • Green stem disorder (GSD) of soybean (Glycine max (L.) Merr.) is characterized by delayed senescence of stems with normal pod ripening and seed maturation (Hobbs, 2006). GSD complicates harvesting of soybeans by significantly increasing the difficulty in cutting the affected plants. There is also the potential for moisture in the stems to be scattered on the seed, reducing the grade and storability of the seed. Not only the cause of GSD is yet unknown, but also GSD cannot be evaluated until maturity, therefore the method to evaluate GSD in early growth stage with high sensitivity is necessary. In previous studies, it has been reported that vegetative storage protein (VSP) accumulates and the syndrome of GSD appears in soybean after depod treatment (Fischer, 1999). Soybean VSP is a storage protein which is abundant in young sink leaves and degraded during seed fill (Wittenbach, 1982). Hence, we have established a system to quantify VSP of high sensitivity by using standard protein made by genetically transformed E. coli and specific antibody against VSP, and studied the relationship between VSP and GSD, by depod experiment and drought/excess wet experiments. The result of depod experiment with the cultivar 'Yukihomare' was the same with the previous studies, VSP accumulated much more than control and the syndrome of GSD appeared in soybean in depod treatment. Drought and excess wet had different impact on GSD. Excess wet caused GSD of the cultivar 'Tachinagaha (GSD susceptible)', while drought caused a little syndrome of GSD in the cultivar 'Touhoku 129 (GSD resistant)'. The accumulation of VSP differed between the two cultivars over time. In conclusion, the accumulation of VSP came along with the emergence of GSD. Different cultivars showed different response to drought and excess wet. In the future, it is expected that the dynamics of VSP will be elucidated in detail, leading to the development of early diagnosis technology for green stem disorder and the elucidation of mechanism of soybean GSD.

  • PDF

Effects of Korean red ginseng on T-cell repopulation after autologous hematopoietic stem cell transplantation in childhood cancer patients

  • Kyung Taek Hong;Yeon Jun Kang;Jung Yoon Choi;Young Ju Yun;Il-Moo Chang;Hee Young Shin;Hyoung Jin Kang;Won-Woo Lee
    • Journal of Ginseng Research
    • /
    • v.48 no.1
    • /
    • pp.68-76
    • /
    • 2024
  • Background: Although the survival outcomes of childhood cancer patients have improved, childhood cancer survivors suffer from various degrees of immune dysfunction or delayed immune reconstitution. This study aimed to investigate the effect of Korean Red Ginseng (KRG) on T cell recovery in childhood cancer patients who underwent autologous hematopoietic stem cell transplantation (ASCT) from the perspective of inflammatory and senescent phenotypes. Methods: This was a single-arm exploratory trial. The KRG group (n = 15) received KRG powder from month 1 to month 12 post-ASCT. We compared the results of the KRG group with those of the control group (n = 23). The proportions of T cell populations, senescent phenotypes, and cytokine production profiles were analyzed at 1, 3, 6, and 12 months post-ASCT using peripheral blood samples. Results: All patients in the KRG group completed the treatment without any safety issues and showed a comparable T cell repopulation pattern to that in the control group. In particular, KRG administration influenced the repopulation of CD4+ T cells via T cell expansion and differentiation into effector memory cell re-expressing CD45RA (EMRA) cells. Although the KRG group showed an increase in the number of CD4+ EMRA cells, the expression of senescent and exhausted markers in these cells decreased, and the capacity for senescence-related cytokine production in the senescent CD28- subset was ameliorated. Conclusions: These findings suggest that KRG promotes the repopulation of CD4+ EMRA T cells and regulates phenotypical and functional senescent changes after ASCT in pediatric patients with cancer.

Morphological Traits of S598A Sweetpotato as an Industrial Starch Crop

  • Kim, Kyung-Moon;Kim, Ji-Yeon;Kim, Jung-Il
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.4
    • /
    • pp.422-426
    • /
    • 2009
  • Sweetpotato is one of the important starch crops, current more considered as an industrial crop rather than food because it has higher starch content (over 80% of biomass), it is used for bio resources for industrial area. In this study, we generated S598A (a mutant gene of oat phytochrome A) sweetpotato plant using Agrobacterium-transformation method. Morphological characteristics of S598A plant were compared with the wild type sweetpotato, S598A had darker green leaves, increased chlorophyll content higher than to two-fold, delayed leaf senescence, shorter plant height (60% shorter than that of the wild type), more number of leaves and petioles about 1.8-fold, shorter petiole length (30% shorter), 1.2-fold more branches and 1.6-fold thicker stem diameters. From this study, S598A plants with such phenotypic characteristics might be able to use the solar energy efficiently, to have increased tolerance to biotic and abiotic stresses and finally to increase productivity (not only starch yield but also root biomass yield). S598A sweetpotato lines are under field trials.

Effects of inoculation with selected Rhizobium japonicum on the yield, nodule formation and nitrogen fixing activity of soybean(Glycine max) (선발대두근류균(選拔大豆根瘤菌)의 접종(接種)의 대두근류형성(大豆根瘤形成) 질소고정호성(窒素固定浩性) 및 수량(收量)에 미치는 영향(影響))

  • Yoo, Ick-Dong;Kim, Chang-Jin;Rhee, Yoon;Kim, Seok-Dong;Hong, Eun-Hi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.1
    • /
    • pp.55-60
    • /
    • 1988
  • To develop soybean inoculant the effects of inoculation with selected Rhizobium japonicum strains were tested in the field, and the results were as following. 1. With the inoculation of selected strains, increase of nodule number, nodule weight and nitrogen fixing activity were observed with or without applying N-fertilizer. 2. Chlorophyll contents was increased and senescence of plant was delayed with the inoculation of selected strains in case without applying N-fertilizer. But there was little difference of chlorophyll contents in case with applying N-fertilizer. 3. There were little differences of plant height and number of nodes, and some increase of plant stem dry matter and number of pods with inoculation of selected strains. 4. The mean yield of inoculation group (363-374kg/10a) was increased by 8-11% comparing to the uninoculated group (337kg/10a) in case without applyiag N-fertilizer. The mean yield of inoculated group (368-384kg/10a) was increased by 9-14% also in case with applying N-fertilizer.

  • PDF

Changes in Moisture Content and Quality of Oriental Hybrid Lily (Lilium oriental cv. Siberia) Cut Flowers during Storage at Cold and Dry Condition and Subsequent Exposure to Ambient Temperature (오리엔탈 나리 '시베리아' 절화의 포장내 건식저장 기간별 수분함량과 품질 변화)

  • Lee, Jung-Soo;Rhee, JuHee;Kang, Yun-Im;Choi, Ji Weon
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.23 no.1
    • /
    • pp.27-36
    • /
    • 2017
  • In order to determine the relationship between water content and flower qualities of oriental hybrid lily cv. 'Siberia' cut flower, flowers were subjected to dry and cold storage at $5^{\circ}C$ for 3, 6, and 12 days and subsequently exposed to ambient temperature ($26^{\circ}C$) in bottles with water for up to 16 days. Flowers stored at $22^{\circ}C$ in dry condition for 3 days were used as the control. Changes in fresh weight, moisture content, water balance, flowering stages, osmolality and vase life of cut flowers were observed. Flowers treated with cold and dry storage had higher moisture content compared to control sample. However, this trend was evident only for 3-day cold and dry stored sample during the whole storage period. The fresh weight of cut flowers increased gradually when the samples were transferred to ambient temperature in water bottles and then declined steadily before reaching the peak in between 6-8 days of vase life. However, the changes of fresh weight of control sample were substantially faster than samples pre-treated with cold and dry storage. This was also correlated with the water balance of cut flower as it reached the minus (-) value in 6-8 days of vase life at ambient temperature. Cut lily flowers showed high osmolality values corresponding with the duration of dry storage regardless of low or higher temperature. However, osmolality had no effect on vase life since flower stem absorbed water rapidly at the end of dry storage period. Our vase life results suggest that cold and dry storage of lily cut flowers for a certain period could ensure longer vase life at ambient temperature. It was observed that prolonging the storage period at cold and dry condition for more than a week significantly increased bud abortion, reduced longevity of flowers and reduced the vase life of cut flowers. On the other hand, the shorter cold and dry storage treatment delayed the bud opening and senescence of the flowers, thus, slowering the normal maturation and aging. Results indicated that dry and cold storage at $5^{\circ}C$ for 3 days was effective in maintaining and preserving overall quality and vase life at ambient condition of oriental hybrid lily cut flowers.