• Title/Summary/Keyword: delayed planting

Search Result 134, Processing Time 0.022 seconds

Effects of Uniconazole Treatment on the Growth and Floweringof Potted Chrysanthemum indicum L. (Uniconazole 농도가 분화용 감국의 생육 및 개화에 미치는 영향)

  • Jung, Sung Sook;Jeong, Hyun Hwan;Kim, Ki Sun
    • Horticultural Science & Technology
    • /
    • v.18 no.1
    • /
    • pp.28-32
    • /
    • 2000
  • This study was carried out to investigate the effects of uniconazole treatment on the growth and flowering of potted Chrysanthemum indicum L. for high quality pot plant production. Uniconazole was drenched at 0.05, 0.01, or 0.15 mg a.i./pot at 14 days after planting (DAP) of rooted cuttings. Simultaneously the short-day treatment (SDT) and pinching were adapted. The same amount of uniconazole (0.05 mg a.i./pot) was spilt drenched at once, twice, and three times, respectively, at 1 week interval. Uniconazole markedly reduced plant height, branch length, and stem diameter. Plant height was reduced linearly with increasing uniconazole concentration at 0.05, 0.01, or 0.15 mg a.i./pot up-to 41.6%, 52.5%, and 58.5%, respectively. In 0.05 mg a.i./pot, the number of branches greatly increased and plant height of 22.6 cm was adequate for pot plant. However, higher concentrations (0.10, 0.15 mg a.i.) were not suitable for production of high quality pot plant (17.0, 14.8 cm, respectively). Pinching and SDT decreased the number of days to visible bud, while uniconazole treatments delayed days to visible bud by 5-9 days compared with pinching and SDT. Number of visible buds was highest at 0.05 mg a.i./pot uniconazole treatment. However, flower diameter was decreased by uniconazole treatment, resulting in compact form. Number of stomata was increased by uniconazole treatment. The length of vascular tissues of uniconazole-treated plants ($11.2{\mu}m$) was smaller than that of non-treated plants ($15.0{\mu}m$, and the size of xylem vessel was also decreased. Uniconazole treatment at 0.05 mg a.i./pot at 14 DAP with pinching and SDT were recommended for pot plant production of C. indicum L.

  • PDF

Studies on the utilization of sandy barren lands and sandy farm lands of low productivity -1. Studies on growing rice-plant in sandy barren lands (식량증산을 위한 유휴사지(遊休砂地) 및 사질계(砂質系) 농지(農地) 활용(活用)에 관한 기초적(基礎的) 연구(硏究) -1. 수도(水稻)의 사지재배(砂地栽培)에 관한 연구(硏究))

  • Kim, Yong Chul;Choe, Gyu Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.9 no.1
    • /
    • pp.33-38
    • /
    • 1976
  • As a basic studies for increasing food production utilizing sandy barren lands and sandy farmlands of low productivity which distributed widely in Korea, an experiment of growing rice-plant on sandy barren land was undertaken as follows. 1. Variety, IR-667 was adopted and the growing method was a nutrient-irrigation culture which aimed to minimize percolation loss in sand with an automatic contineous supplying nutrient solution for supplmenting the sand characteristics. 2. The growth type price-plant after heading was a typical higher yield plant, that is, numerous, small, narrow, and thickend leaves, straight attitute, dense fasciculated etc. though the rooting of plant after planting was delayed because of using paddy-field grown seedling. 3. The adaptability of rice-plants on sandy land seemed to be different by varieties and IR-667 was more adaptable than ordinary Japonica varieties. 4. Even at the period of heading and maturing, the root system of rice-plant grown on sand showed vigorous growth having more activated apical portions. while, even the lower leaves showed flourished state. 5. The suppling of calcium and magnecium in addition to nitrogen, phosphorus and potassium on sand made notable increase of stem number per plant, grain number per stem and yields.

  • PDF

Grapevine Growth and Berry Development under the Agrivoltaic Solar Panels in the Vineyards (영농형 태양광 시설 설치에 따른 포도나무 생육 및 과실 특성 변화 비교)

  • Ahn, Soon Young;Lee, Dan Bi;Lee, Hae In;Myint, Zar Le;Min, Sang Yoon;Kim, Bo Myung;Oh, Wook;Jung, Jae Hak;Yun, Hae Keun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.356-365
    • /
    • 2022
  • Agrivoltaic systems, also called solar sharing, stated from an idea that utilizes sunlight above the light saturation point of crops for power generation using solar panels. The agrivoltaic systems are expected to reduce the incident solar radiation, the consequent surface cooling effect, and evapotranspiration, and bring additional income to farms through solar power generation by combining crops with solar photovoltaics. In this study, to evaluate if agrivoltaic systems are suitable for viticulture, we investigated the microclimatic change, the growth of vines and the characteristics of grape grown under solar panels set by planting lines compared with ones in open vineyards. There was high reduction of wind speed during over-wintering season, and low soil temperature under solar panel compared to those in the open field. There was not significant difference in total carbohydrates and bud burst in bearing mother branches between plots. Despite high content of chlorophyll in vines grown under panels, there is no significant difference in shoot growth of vines, berry weight, cluster weight, total soluble solid content and acidity of berries, and anthocyanin content of berry skins in harvested grapes in vineyards under panels and open vineyards. It was observed that harvesting season was delayed by 7-10 days due to late skin coloration in grapes grown in vineyards under panels compared to ones grown in open vineyards. The results from this study would be used as data required in development of viticulture system under panel in the future and further study for evaluating the influence of agrivoltaic system on production of crops including grapes.

Studies on the Varietal Difference in the Physiology of Ripening in Rice with Special Reference to Raising the Percentage of Ripened Grains (수도 등숙의 품종간차이와 그 향상에 관한 연구)

  • Su-Bong Ahn
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.14
    • /
    • pp.1-40
    • /
    • 1973
  • There is a general tendency to increase nitrogen level in rice production to insure an increased yield. On the other hand, percentage of ripened grains is getting decreased with such an increased fertilizer level. Decreasing of the percentage is one of the important yield limiting factors. Especially the newly developed rice variety, 'Tongil' is characterized by a relatively low percentage of ripened grains as compared with the other leading varieties. Therefore, these studies were aimed to finding out of some measures for the improvement of ripening in rice. The studies had been carried out in the field and in the phytotron during the period of three years from 1970 to 1972 at the Crop Experiment Station in Suwon. The results obtained from the experiments could be summarized as follows: 1. The spikelet of Tongil was longer in length, more narrow in width, thinner in thickness, smaller in the volume of grains and lighter in grain weight than those of Jinheung. The specific gravity of grain was closely correlated with grain weight and the relationship with thickness, width and length was getting smaller in Jinheung. On the other hand, Tongil showed a different pattern from Jinheung. The relationship of the specific gravity with grain weight was the greatest and followed by that with the width, thickness and length, in order. 2. The distribution of grain weight selected by specific gravity was different from one variety to another. Most of grains of Jinheung were distributed over the specific gravity of 1.12 with its peak at 1.18, but many of grains of Tongil were distributed below 1.12 with its peak at 1.16. The brown/rough rice ratio was sharply declined below the specific gravity of 1.06 in Jinheung, but that of Tongil was not declined from the 1.20 to the 0.96. Accordingly, it seemed to be unfair to make the specific gravity criterion for ripened grains at 1.06 in the Tongil variety. 3. The increasing tendency of grain weight after flowering was different depending on varieties. Generally speaking, rice varieties originated from cold area showed a slow grain weight increase while Tongil was rapid except at lower temperature in late ripening stage. 4. In the late-tillered culms or weak culms, the number of spikelets was small and the percentage of ripened grains was low. Tongil produced more late-tillered culms and had a longer flowering duration especially at lower temperature, resulting in a lower percentage of ripened grains. 5. The leaf blade of Tongil was short, broad and errect, having light receiving status for photosynthesis was better. The photosynthetic activity of Tongil per unit leaf area was higher than that of Jinheung at higher temperature, but lower at lower temperature. 6. Tongil was highly resistant to lodging because of short culm length, and thick lower-internodes. Before flowering, Tongil had a relatively higher amount of sugars, phosphate, silicate, calcium, manganese and magnesium. 7. The number of spikelets of Tongil was much more than that of Jinheung. The negative correlation was observed between the number of spikelets and percentage of ripened grains in Jinheung, but no correlation was found in Tongil grown at higher temperature. Therefore, grain yield was increased with increased number of spikelets in Tongil. Anthesis was not occurred below 21$^{\circ}C$ in Tongil, so sterile spikelets were increased at lower temperature during flowering stage. 8. The root distribution of Jinheung was deeper than that of Tongil. The root activity of Tongil evaluated by $\alpha$-naphthylamine oxidation method, was higher than that of Jinheung at higher temperature, but lower at lower temperature. It is seemed to be related with discoloration of leaf blades. 9. Tongil had a better light receiving status for photosynthesis and a better productive structure with balance between photosynthesis and respiration, so it is seemed that tongil has more ideal plant type for getting of a higher grain yield as compared with Jinheung. 10. Solar radiation during the 10 days before to 30 days after flowering seemed enough for ripening in suwon, but the air temperature dropped down below 22$^{\circ}C$ beyond August 25. Therefore, it was believed that air temperature is one of ripening limiting factors in this case. 11. The optimum temperature for ripening in Jinheung was relatively lower than that of Tongil requriing more than $25^{\circ}C$. Air temperature below 21$^{\circ}C$ was one of limiting factors for ripening in Tongil. 12. It seemed that Jinheung has relatively high photosensitivity and moderate thermosensitivity, while Tongil has a low photosensitivity, high thermosensitivity and longer basic vegetative phase. 13. Under a condition of higher nitrogen application at late growing stage, the grain yield of Jinheung was increased with improvement of percentage of ripened grains, while grain yield of Tongil decreased due to decreasing the number of spikelets although photosynthetic activity after flowering was. increased. 14. The grain yield of Jinheung was decreased slightly in the late transplanting culture since its photosynthetic activity was relatively high at lower temperature, but that of Tonil was decreased due to its inactive photosynthetic activity at lower temperature. The highest yield of Tongil was obtained in the early transplanting culture. 15. Tongil was adapted to a higher fertilizer and dense transplanting, and the percentage of ripened grains was improved by shortening of the flowering duration with increased number of seedlings per hill. 16. The percentage of vigorous tillers was increased with a denser transplanting and increasing in number of seedlings per hill. 17. The possibility to improve percentage of ripened grains was shown with phosphate application at lower temperature. The above mentioned results are again summarized below. The Japonica type leading varieties should be flowered before August 20 to insure a satisfactory ripening of grains. Nitrogen applied should not be more than 7.5kg/10a as the basal-dressing and the remained nitrogen should be applied at the later growing stage to increase their photosynthetic activity. The morphological and physiological characteristics of Tongil, a semi-dwarf, Indica $\times$ Japonica hybrid variety, are very different from those of other leading rice varieties, requring changes in seed selection by specific gravity method, in milling and in the cultural practices. Considering the peculiar distribution of grains selected by the method and the brown/rough rice ratio, the specific gravity criterion for seed selection should be changed from the currently employed 1.06 to about 0.96 for Tongil. In milling process, it would be advisable to bear in mind the specific traits of Tongil grain appearance. Tongil is a variety with many weak tillers and under lower temperature condition flowering is delayed. Such characteristics result in inactivation of roots and leaf blades which affects substantially lowering of the percentage of ripened grains due to increased unfertilized spikelets. In addition, Tongil is adapted well to higher nitrogen application. Therefore, it would be recommended to transplant Tongil variety earlier in season under the condition of higer nitrogen, phosphate and silicate. A dense planting-space with three vigorous seedlings per hill should be practiced in this case. In order to manifest fully the capability of Tongil, several aspects such as the varietal improvement, culural practices and milling process should be more intensively considered in the future.he future.

  • PDF