• Title/Summary/Keyword: delay-based TCP

Search Result 118, Processing Time 0.025 seconds

Stability Analysis of a Multi-Link TCP Vegas Model

  • Park, Poo-Gyeon;Choi, Doo-Jin;Choi, Yoon-Jong;Ko, Jeong-Wan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1072-1077
    • /
    • 2004
  • This paper provides a new approach to analyze the stability of a general multi-link TCP Vegas, which is a kind of feedback-based congestion algorithm. Whereas the conventional approaches use the approximately linearized model of the TCP Vegas along equilibrium pints, this approach models a multi-link TCP Vegas network in the form of a piecewise linear multiple time-delay system. And then, based on the exactly characterized dynamic model, this paper presents a new stability criterion via a piecewise and multiple delay-dependent Lyapunov-Krasovskii function. Especially, the resulting stability criterion is formulated in terms of linear matrix inequalities (LMIs).

  • PDF

A TCP-Friendly Congestion Control Scheme using Hybrid Approach for Enhancing Fairness of Real-Time Video (실시간 비디오 스트림의 공정성 개선를 위한 TCP 친화적 하이브리드 혼잡제어기법)

  • Kim, Hyun-Tae;Yang, Jong-Un;Ra, In-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.285-289
    • /
    • 2004
  • Recently, due to the high development of the internet, needs for multimedia streams such as digital audio and video is increasing much more. In case of transmitting multimedia streams using the User Datagram Protocol (UDP), it may cause starvation of TCP traffic on the same transmission path, thus resulting in congestion collapse and enormous delay because UDP does not perform TCP-like congestion control. Because of this problem, diverse researches are being conducted on new transmission schemes and protocols intended to efficiently reduce the transmission delay of real-time multimedia streams and perform congestion control. The TCP-friendly congestion control schemes can be classified into the window-based congestion control, which uses the general congestion window management function, and the rate-based congestion control, which dynamically adjusts transmission rate by using TCP modeling equations and the like. In this paper, we suggest the square-root congestion avoidance algorithm with the hybrid TCP-friendly congestion control scheme which the window-based and rate-based congestion controls are dealt with in a combined way. We apply the proposed algorithm to the existing TEAR. We simulate the performance of the proposed TEAR by using NS, and the result shows that it gives better improvement in the stability needed for providing congestion control than the existing TEAR.

One-Way Delay Estimation and Its Application (단방향 지연 시간 추정 기법과 이를 이용한 응용)

  • Choi Jin-Hee;Yoo Hyuck
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.3
    • /
    • pp.359-369
    • /
    • 2005
  • Delay estimation is a difficult Problem in computer networks. Accurate one-way delay estimation is crucial because it serves a very important role in network performance and thus application design. RTT(Round Trip Time) is often used as an approximation of the delay, but because it is a sum of the forward and reverse delays, the actual one-way delay cannot be estimated accurately from RTT. To estimate one-way delay accurately, this paper proposes a new scheme that analytically derives one-way delay, forward and reverse delay respectively. We show that the performance of TCP can improve dramatically in asymmetric networks using our scheme. A key contribution of this paper is that our one-way deiay estimation is much more accurate than RTT estimation so that TCP can quickly find the network capacity in the slow start phase. Since RTT is the sum of the forward and reverse delays, our scheme can be applied to any protocol that is based on RTT.

Multipath TCP performance improvement using AQM in heterogeneous networks with bufferbloat (버퍼블로트를 가지는 이종 망에서 AQM을 이용한 Multipath TCP 성능 개선)

  • Hyeon, Dong Min;Jang, Jeong Hun;Kim, Min Sub;Han, Ki Moon;Lee, Jae Yong;Kim, Byung Chul
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.131-140
    • /
    • 2017
  • Multipath TCP (MPTCP) is a transport layer protocol that simultaneously transmits data using multiple interfaces. MPTCP is superior to existing TCP in network environment with homogeneous subflows, but it shows worse performance compared to existing TCP in network environment with bufferbloat. If a bufferbloat occurs in one of the MPTCP multipaths, the packet will not arrive at the MPTCP receive buffer due to a sudden increase in delay time, resulting in a HoL blocking phenomenon. It makes the receive window of the other path to be zero. In this paper, we apply Adaptive Random Early Detection (ARED), Controlled Delay (CoDel) and Proportional Integral Controller Enhanced (PIE) among the proposed Active Queue Management (AQM) to limit the delay of bufferbloat path. Experiments were conducted to improve the performance of MPTCP in heterogeneous networks. In order to carry out the experiment, we constructed a Linux-based testbed and compared the MPTCP performance with that of the existing droptail.

An Efficient TCP Buffer Tuning Algorithm based on Packet Loss Ratio(TBT-PLR) (패킷 손실률에 기반한 효율적인 TCP Buffer Tuning 알고리즘)

  • Yoo Gi-Chul;Kim Dong-kyun
    • The KIPS Transactions:PartC
    • /
    • v.12C no.1 s.97
    • /
    • pp.121-128
    • /
    • 2005
  • Tho existing TCP(Transmission Control Protocol) is known to be unsuitable for a network with the characteristics of high RDP(Bandwidth-Delay Product) because of the fixed small or large buffer size at the TCP sender and receiver. Thus, some trial cases of adjusting the buffer sizes automatically with respect to network condition have been proposed to improve the end-to-end TCP throughput. ATBT(Automatic TCP fluffer Tuning) attempts to assure the buffer size of TCP sender according to its current congestion window size but the ATBT assumes that the buffer size of TCP receiver is maximum value that operating system defines. In DRS(Dynamic Right Sizing), by estimating the TCP arrival data of two times the amount TCP data received previously, the TCP receiver simply reserves the buffer size for the next arrival, accordingly. However, we do not need to reserve exactly two times of buffer size because of the possibility of TCP segment loss. We propose an efficient TCP buffer tuning technique(called TBT-PLR: TCP buffer tuning algorithm based on packet loss ratio) since we adopt the ATBT mechanism and the TBT-PLR mechanism for the TCP sender and the TCP receiver, respectively. For the purpose of testing the actual TCP performance, we implemented our TBT-PLR by modifying the linux kernel version 2.4.18 and evaluated the TCP performance by comparing TBT-PLR with the TCP schemes of the fixed buffer size. As a result, more balanced usage among TCP connections was obtained.

New Stability Analysis of a Single Link TCP Vegas Model

  • Park, Poo-Gyeon;Choi, Doo-Jin;Choi, Yoon-Jong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2430-2434
    • /
    • 2003
  • This paper provides a new approach to analyze the stability of TCP Vegas, which is a kind of feedback-based congestion control algorithm. Whereas the conventional approaches use the approximately linearized model of the TCP Vegas along equilibrium points, this approach uses the exactly characterized dynamic model to get a new stability criterion via a piecewise and delay-dependent Lyapunov-Krasovskii function. Especially, the resulting stability criterion is formulated in terms of linear matrix inequalities (LMIs). Using the new criterion, this paper shows that the current TCP Vegas algorithm is stable in the sufficiently wide region of network delay and link capacity.

  • PDF

TCP Congestion Control Based on Timeout Patterns (타임아웃 패턴에 기반한 TCP 혼잡 제어)

  • Lim Gabjoo;Youn Changhwan;Nam Sang-Won;Lee Inhwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.12
    • /
    • pp.813-819
    • /
    • 2004
  • This paper infers two patterns of timeout from the characteristics of TCP Reno and confirms the existence of the patterns by conducting actual experiments. All timeouts can be classified into either of these patterns by using the history of RTT value. Based on the observed patterns, the paper proposes two algorithms to improve the performance of TCP Reno. Experimental results show that, when compared with TCP Reno, the proposed algorithms improve the bandwidth utilization by 3 to 12 percent. The paper provides good examples of how timeout-based and delay-based congestion control can efficiently work together.

An Efficient Routing Algorithm for extreme networking environments (극단적인 네트워크 환경을 위한 효율적인 라우팅 알고리즘)

  • Wang, Jong Soo;Seo, Doo Ok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.1
    • /
    • pp.47-53
    • /
    • 2012
  • Sensor networks and car networks that have different structure from that of conventional TCP/IP network require extreme network environment due to frequent change of connectivity. Because such extreme network environment has characteristics like unreliable link connectivity, long delay time, asymmetrical data transfer rate, and high error rate, etc., it is difficult to perform normally with the conventional TCP/P-based routing. DTNs (delay and disruption tolerant network) was designed to support data transfer in extreme network environment with long delay time and no guarantee for continuous connectivity between terminals. This study suggests an algorithm that limits the maximum number of copying transferred message to L by improving the spray and wait routing protocol, which is one of the conventional DTNs routing protocols, and using the azimuth and density data of the mobile nods. The suggested algorithm was examined by using ONE, a DTNs simulator. As a result, it could reduce the delay time and overhead of unnecessary packets compared to the conventional spray and wait routing protocol.

Improving TCP Performance Over Mobile ad hoc Networks by Exploiting Cluster-Label-based Routing for Backbone Networks

  • Li, Vitaly;Ha, Jae-Yeol;Oh, Hoon;Park, Hong-Seong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8B
    • /
    • pp.689-698
    • /
    • 2008
  • The performance of a TCP protocol on MANETs has been studied in a numerous researches. One of the significant reasons of TCP performance degradation on MANETs is inability to distinguish between packet losses due to congestion from those caused by nodes mobility and as consequence broken routes. This paper presents the Cluster-Label-based Routing (CLR) protocol that is an attempt to compensate source of TCP problems on MANETs - multi-hop mobile environment. By utilizing Cluster-Label-based mechanism for Backbone, the CLR is able to concentrate on detection and compensation of movement of a destination node. The proposed protocol provides better goodput and delay performance than standardized protocols especially in cases of large network size and/or high mobility rate.

Analytical Modeling of TCP Dynamics in Infrastructure-Based IEEE 802.11 WLANs

  • Yu, Jeong-Gyun;Choi, Sung-Hyun;Qiao, Daji
    • Journal of Communications and Networks
    • /
    • v.11 no.5
    • /
    • pp.518-528
    • /
    • 2009
  • IEEE 802.11 wireless local area network (WLAN) has become the prevailing solution for wireless Internet access while transport control protocol (TCP) is the dominant transport-layer protocol in the Internet. It is known that, in an infrastructure-based WLAN with multiple stations carrying long-lived TCP flows, the number of TCP stations that are actively contending to access the wireless channel remains very small. Hence, the aggregate TCP throughput is basically independent of the total number of TCP stations. This phenomenon is due to the closed-loop nature of TCP flow control and the bottleneck downlink (i.e., access point-to-station) transmissions in infrastructure-based WLANs. In this paper, we develop a comprehensive analytical model to study TCP dynamics in infrastructure-based 802.11 WLANs. We calculate the average number of active TCP stations and the aggregate TCP throughput using our model for given total number of TCP stations and the maximum TCP receive window size. We find out that the default minimum contention window sizes specified in the standards (i.e., 31 and 15 for 802.11b and 802.11a, respectively) are not optimal in terms of TCP throughput maximization. Via ns-2 simulation, we verify the correctness of our analytical model and study the effects of some of the simplifying assumptions employed in the model. Simulation results show that our model is reasonably accurate, particularly when the wireline delay is small and/or the packet loss rate is low.