• Title/Summary/Keyword: delamination strength

Search Result 278, Processing Time 0.036 seconds

Damage Characteristics of Quasi Isotropic Composite Laminates Subjected to Low Velocity Impact (준등방성 복합적층판의 저속충격에 의한 손상특성)

  • Kim, J.H.;Jeon, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.6
    • /
    • pp.135-141
    • /
    • 1997
  • Low velocity impact test and compressive residual strength test after impact were performed by using Hercules AS4/3501-6[45/0/-45/90]$_{2s}$ laminated plate to investigate the low velocity impact damage behavior and the post-impact strength degradation on orthotropic composite laminate plate. Due to the lateral impact losd, the load path showed "" shape according to the laminate central deflection. Damage in a laminate occurs by inclined matrix crack at the damage initiation load stage and vertical matrix crack, occurs on the outer surface. Evaluating the compressive residual strength after the low velocty impact test, it could be found that there is a transient range where the compressive residual strength drop suddenly in the initial damage which is in the matrix crack range and the initial delamination area. is in the matrix crack range and the initial delamination area.

  • PDF

The Effects of Temperature Change on the Residual Bending Strength of CFRP Laminates after Impact (온도변화가 CFRP 적층재의 충격후 잔류굽힘강도에 미치는 영향)

  • Ra Seung-woo;Jung Jong-an;Yang In-young
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.75-80
    • /
    • 2005
  • In this paper, when CF/EPOXY laminates for high efficiency space structure are subjected to FOD(Foreign Object Damage), the effects of temperature change on the impact damages(inter laminar separation and transverse crack) of CF/EPOXY laminates and the relationship between residual life and impact damages ale experimentally investigated. Composite laminates used in this experiment are CF/EPOXY orthotropic laminated plates, which have two-interfaces $[0^{\circ}_6/90^{\circ}_6]S$ and four-interfaces $[0^{\circ}_3/90^{\circ}_6/0^{\circ}_3]S$. CF/EPOXY specimens with impact damages caused by a steel ball launched from the air gun were observed by the scanning acoustic microscope under room and high temperatures. In this experimental results, various relations were experimentally observed including the delamination area vs. temperature change, the bending strength vs. impact energy and the residual bending strength vs. impact damage of CF/EPOXY laminates. And as the temperature of CF/PEEK laminates increases, the delaminaion areas of impact-induced damages decrease linearly. A linear relationship between the impact energy and the delamination areas were observed. As the temperature of CF/PEEK laminates increases, the delamination areas decrease because of higher initial delaminatin damage energy.

The ]Relationship between Strain Ageing And Delamination Occurrence of Drawn Steel Wires (신선가공 고탄소 강선에서의 시효현상과 딜라미네이션 발생간의 상관관계 고찰)

  • Lee, J.W.;Lee, J.C.;Gang, U.G.;Lee, Y.S.;Park, K.T.;Nam, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.231-234
    • /
    • 2009
  • The effects of annealing temperature and time on mechanical properties and microstructures were already investigated in cold drawn pearlitic steel wires. During annealing, the increment of the tensile strength at low temperatures found to be due to age hardening, while the decrease in the tensile strength at high temperatures was attributed to age softening, involving the spheroidization of lamellar cementite and recovery of lamellar ferrite. Since Between increase of tensile strength and the occurrence of the delamination would be closely related to the dissolution of cementite, the increase of drawing strain by lower annealing temperature caused the between higher tensile strength and the easier occurrence of the delamination in cold drawn pearlitic steel wires.

  • PDF

Delamination Limit of Aluminum Foil-Laminated Sheet During Stretch Forming (등이축인장 모드 변형시 알루미늄 포일 접착강판의 박리한계 예측)

  • Lee, Chan-Joo;Son, Young-Ki;Lee, Jung-Min;Lee, Seon-Bong;Byun, Sang-Deog;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.413-420
    • /
    • 2012
  • An aluminum foil-laminated sheet is a laminated steel sheet on which aluminum foil is adhesively bonded. It is usually used on the outer panel of home appliances to provide an aluminum feeling and appearance on the surface of the product. The delamination of aluminum foil is one of the main problems during the stretch forming process. The purpose of this study is was to determine the delamination limit of an aluminum foil-laminated sheet in the stretch forming process. The delamination was dependent on the bonding strength between aluminum foil and steel sheet. The fracture behavior of the interface between the aluminum foil and the steel sheet was described by a cohesive zone model. A finite element was conducted with the cohesive zone model to analyze the relationship between the delamination limit and the bonding strength of the interface. The interface bonding strength was evaluated by lap shear and T-peel test. The delamination limit of the aluminum foil-laminated sheet was determined by using the bonding strength of the steel sheet. The delamination limit was also verified by the Erichsen test.

A study on the Impact damages and residual strength of CFRP laminates to impact under high temperature (고온에서 총격을 받는 CFRP 적층재의 총격손상과 잔류강도에 관한 연구)

  • 정종안;이상호;양인영
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.44-52
    • /
    • 1996
  • An experimental study on the effects of temperature change on the impact damages of CFRP aminates was made through an observation of the interrelations between the Impact energy vs. delamination area, the impact energy vs. residual bending strength, and the delamination area vs. the decreasing of the residual bending strength for CF/EPOXY and CF/PEEK composite laminates subjected to FOD (Foreign Object Damage) under high temperatures.

  • PDF

Detection of Delamination Crack for Polymer Matrix Composites with Carbon Fiber by Electric Potential Method

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.149-153
    • /
    • 2013
  • Delamination crack detection is very important for improving the structural reliability of laminated composite structures. This requires real-time delamination detection technologies. For composite laminates that are reinforced with carbon fiber, an electrical potential method uses carbon fiber for reinforcements and sensors at the same time. The use of carbon fiber for sensors does not need to consider the strength reduction of smart structures induced by imbedding sensors into the structures. With carbon fiber reinforced (CF/) epoxy matrix composites, it had been proved that the delamination crack was detected experimentally. In the present study, therefore, similar experiments were conducted to prove the applicability of the method for delamination crack detection of CF/polyetherethereketone matrix composite laminates. Mode I and mode II delamination tests with artificial cracks were conducted, and three point bending tests without artificial cracks were conducted. This study experimentally proves the applicability of the method for detection of delamination cracks. CF/polyetherethereketone material has strong electric resistance anisotropy. For CF/polyetherethereketone matrix composites, a carbon fiber network is constructed, and the network is broken by propagation of delamination cracks. This causes a change in the electric resistance of CF/polyetherethereketone matrix composites. Using three point bending specimens, delamination cracks generated without artificial initial cracks is proved to be detectable using the electric potential method: This method successfully detected delamination cracks.

The Impact Damage and the Residual Strength of CF/PEEK Laminate Subjected to Transverse Impact under the High Temperature (고온하에서 횡충격을 받는 CF/PEEK 적층재의 충격손상과 잔류강도)

  • Yang, I.Y.;Jung, J.A.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.66-75
    • /
    • 1994
  • In this paper, the effects of temperature change on the impact damages of CF/PEEK laminates are experimentally investigated. Composite laminates used in this experiment are CF/PEEK orthotropic laminated plates, which have two-interfaces$[0^{\circ}_4/90^{\circ}_4]_{9+} A steel ball launched by the air gun collides against CFRP laminates to generate impact damage. The delamination damages are oberved by a scanning acoustic microscope. And various relations are experimentally observed including the impact energy vs. delamination area, the specimen temperature vs. transverse crack, and the impact energy vs. residual bending strength of carbon fiber peek composite laminates subjected to FOD(Foreign Object Damage) under high temperatures.

  • PDF

The Application of AE for a Drilling Damage Process Monitoring in [0/90 0 ]s CFRP Composites ([0/90 0 ]s CFRP 복합재의 드릴작업손상과정 모니터링에 대한 AE의 적용)

  • Yun, Yu-Seong;Gwon, O-Heon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1491-1498
    • /
    • 2000
  • In recent years, CFRP composite materials have been increasingly used in various fields of engineering because of a high specific strength and stiffness properties. Drilling is one of the most impo rtant cutting processes that are generally carried out on CFRP materials owing to the need for the structural integration. However, delamination are often occurred as one of the drilling damages. Therefore, there are needs studying for the relationships between CFRP drilling and delamination in order to avoid low strength of the structures and inaccuracies of the integration. In this study, AE signals and thrust forces were used for the evaluations of the delamination from a drilling process in [0/900]s CFRP materials. And the drilling damage processes were observed and measured by a real time monitoring technique with a video camera. From the results, we found that the relationships between the delamination from drilling and AE characteristics and drill thrust forces for [0/900]s CFRP composites. Also, we proposed the monitoring method for a visual analysis of drilling damages.

A Study on compressive behavior of laminated plates with initial delamination (박리가 발생된 적층평판의 압축 거동에 관한 연구)

  • Lee, Nam-Ju;Jo, Yong-Oug
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.167-174
    • /
    • 2016
  • Recently laminated plates like composite materials has been used in a various field to grow the specific strength of the composition. However, delamination area caused by barely visible impact damage has potential risk that it can raise buckling of the delaminated plate. Because it can interrupt compressive behavior of laminated plates and reduce their strength, the whole structure can't be constituted by these materials. Many studies assume that behavior of the delaminated plate which is in lamanated plates equals theoretical buckling but their actual motion doesn't coincide because of initial imperfections of materials like deflection, residual stress, eccentricity and so on. In this paper, we change laminated plates with initial delamination into a beam of rectangular cross section with the initial crack and analyze compressive behavior according to initial imperfections through finite element method(FEM). Consequently analysis results show that behavior of laminated plates involving delamination differs from ideal buckling of the delaminated plate in actual conditions and we can predict its motion through imperfections relationship.

  • PDF

Investigation of Tensile Behaviors in Open Hole and Bolt Joint Configurations of Carbon Fiber/Epoxy Composites

  • Dong-Wook Hwang;Sanjay Kumar;Dong-Hun Ha;Su-Min Jo;Yun-Hae Kim
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.259-263
    • /
    • 2023
  • This study investigated the open hole tensile (OHT) properties of carbon fiber/epoxy composites and compared them to bolt joint tensile (BJT) properties. The net nominal modulus and strength (1376 MPa) were found to be higher than the gross nominal strength (1041 MPa), likely due to increasing hole size. The OHT and BJT specimens exhibited similar stiffness, as expected without bolt rotation causing secondary bending. OHT specimens experienced a sharp drop in stress indicating unstable crack propagation, delamination, and catastrophic failure. BJT specimens failed through shear out on the bolt side and bearing failure on the nut side, involving fiber kinking, matrix splitting, and delamination, resulting in lower strength compared to OHT specimens. The strength retention of carbon fiber/epoxy composites with open holes was 66%. Delamination initiation at the hole's edge caused a reduction in the stress concentration factor. Filling the hole with a bolt suppressed this relieving mechanism, leading to lower strength in BJT specimens compared to OHT specimens. Bolt joint efficiency was calculated as 15%. The reduction in strength in bolted joints was attributed to fiber-matrix splitting and delamination, aligning with Hart Smith's bolted joint efficiency diagram. These findings contribute to materials selection and structural reliability estimation for carbon fiber/epoxy composites. They highlight the behavior of open hole and bolt joint configurations under tensile loading, providing valuable insights for engineering applications.