• 제목/요약/키워드: delamination resistance

검색결과 116건 처리시간 0.024초

원통형 단판적층재의 접착성 및 도장처리에 따른 표면내구성 (Bonding Quality of Cylindrical LVL and Surface Durability by Its Painting)

  • 서진석;김종인;황성욱;박상범
    • Journal of the Korean Wood Science and Technology
    • /
    • 제40권6호
    • /
    • pp.418-423
    • /
    • 2012
  • 원통형 단판적층재(LVL)의 구조재 이외의 공예재 등의 용도개발을 위하여 원통형 단판적층재의 내수접착성과 도장처리에 따른 내마모성 및 표면경도를 측정하였다. 레조시놀 수지와 경화제(paraformaldehyde)를 100 : 5의 혼합비로 하여 접착 경화한 원통형 단판적층재의 전체적인 접착층에 대한 삶음박리 접착력은 양호한 편이었다. 내마모성은 횡단면이 접선단면보다 상대적으로 우수하였으며, 접선단면에 자외선 차단 오일을 도장 처리한 경우 내마모성이 향상되었다. 표면경도는 횡단면의 경우, 낙엽송 중심재가 라디에타소나무 단판적층 부위보다 높았고, 접선단면의 경우에는 접착층 부위가 단판부위보다 높게 나타났다.

Thermal Transient Characteristics of Die Attach in High Power LED Package

  • Kim Hyun-Ho;Choi Sang-Hyun;Shin Sang-Hyun;Lee Young-Gi;Choi Seok-Moon;Oh Yong-Soo
    • 마이크로전자및패키징학회지
    • /
    • 제12권4호통권37호
    • /
    • pp.331-338
    • /
    • 2005
  • The rapid advances in high power light sources and arrays as encountered in incandescent lamps have induced dramatic increases in die heat flux and power consumption at all levels of high power LED packaging. The lifetime of such devices and device arrays is determined by their temperature and thermal transients controlled by the powering and cooling, because they are usually operated under rough environmental conditions. The reliability of packaged electronics strongly depends on the die attach quality, because any void or a small delamination may cause instant temperature increase in the die, leading sooner or later to failure in the operation. Die attach materials have a key role in the thermal management of high power LED packages by providing the low thermal resistance between the heat generating LED chips and the heat dissipating heat slug. In this paper, thermal transient characteristics of die attach in high power LED package have been studied based on the thermal transient analysis using the evaluation of the structure function of the heat flow path. With high power LED packages fabricated by die attach materials such as Ag paste, solder paste and Au/Sn eutectic bonding, we have demonstrated characteristics such as cross-section analysis, shear test and visual inspection after shear test of die attach and how to detect die attach failures and to measure thermal resistance values of die attach in high power LED package. From the structure function oi the thermal transient characteristics, we could know the result that die attach quality of Au/Sn eutectic bonding presented the thermal resistance of about 3.5K/W. It was much better than those of Ag paste and solder paste presented the thermal resistance of about 11.5${\~}$14.2K/W and 4.4${\~}$4.6K/W, respectively.

  • PDF

탄소 복합재와 알루미늄 이종재료 단일겹침 접착 체결부의 강도에 관한 실험 연구 (An Experimental Study on the Strength of Single-Lap Bonded Joints of Carbon Composite and Aluminum)

  • 강태환;이창재;최진호;권진회
    • 한국항공우주학회지
    • /
    • 제35권3호
    • /
    • pp.204-211
    • /
    • 2007
  • 연구에서는 5가지의 접착길이를 갖는 탄소 복합재-알루미늄 단일겹침 체결부에 대한 실험을 통해 단일겹침 접착 체결부의 파손양상 및 강도를 연구하였다. 시편은 필름 형태의 접착제인 FM73m을 사용하여 이차접착으로 제작하였다. 실험 결과, 이종재료 접착 체결부의 강도는 금속-금속 체결부의 강도보다는 낮고, 복합재-복합재 체결부의 강도보다는 높게 나타났다. 접착길이 대 폭의 비가 1보다 작은 경우, 접착길이의 증가가 강도 저하에 미치는 영향이 컸지만, 접착길이 대 폭의 비가 커질수록 접착길이의 효과는 줄어드는 것으로 나타났다. 모든 시편은 최종적으로 층간분리의 형태로 파손되었다. 따라서 고강도 접착제를 사용한 체결부의 강도향상을 위해서는 적층판의 층간분리 파손을 지연시킬 수 있는 설계가 중요할 것으로 판단된다.

구성형태(構成形態)에 따른 파티클과 파이버로 제조(製造)한 패널의 물리적 및 기계적 성질 (Physical and Mechanical Properties of Panels Fabricated with Particle and Fiber by Composition Types)

  • 윤형운;이필우
    • Journal of the Korean Wood Science and Technology
    • /
    • 제20권2호
    • /
    • pp.9-22
    • /
    • 1992
  • The aim of this research was to investigate physical and mechanical properties of various composition panels, each fabricated with a ratio of fiber to particle of 2 to 10. Type A consisted of fiber-faces and particle-core in layered-mat system. Type B consisted of fiberboard-faces on particleboard-core. Type C consisted of fibers and particles in mixed-mat system. The results obtained from tests of bending strength, internal bond, screw holding strength and stability were as follows: 1. The bending strength and internal bonding of both the Type A panel and the Type B panel were higher than those of the Type C panel and three-layered particle board. 2. The mechanical properties of the Type C panel showed the lowest values of all composition methods. It seems that the different compression ratios of the particle and fiber interrupted the densification of the fibers when hot pressed. 3. The dimensional stability of layered-mat system panels consising of fiber-faces and particle-core was better the than control particleboard. 4. In composition methods of particle and fiber, layered-composition method was more resonable than mixed-composition. The Type B panel had the highest mechanical properties of all the composition types. 5. The Type A panel was considered the ideal composition method because of its resistance to delamination between the particle-layer and the fiber-layer and because of its lower adhesive content and more effective manufa cturing process.

  • PDF

Creating damage tolerant intersections in composite structures using tufting and 3D woven connectors

  • Clegg, Harry M.;Dell'Anno, Giuseppe;Partridge, Ivana K.
    • Advances in aircraft and spacecraft science
    • /
    • 제6권2호
    • /
    • pp.145-156
    • /
    • 2019
  • As the industrial desire for a step change in productivity within the manufacture of composite structures increases, so does the interest in Through-Thickness Reinforcement technologies. As manufacturers look to increase the production rate, whilst reducing cost, Through-Thickness Reinforcement technologies represent valid methods to reinforce structural joints, as well as providing a potential alternative to mechanical fastening and bolting. The use of tufting promises to resolve the typically low delamination resistance, which is necessary when it comes to creating intersections within complex composite structures. Emerging methods include the use of 3D woven connectors, and orthogonally intersecting fibre packs, with the components secured by the selective insertion of microfasteners in the form of tufts. Intersections of this type are prevalent in aeronautical applications, as a typical connection to be found in aircraft wing structures, and their intersections with the composite skin and other structural elements. The common practice is to create back-to-back composite "L's", or to utilise a machined metallic connector, mechanically fastened to the remainder of the structure. 3D woven connectors and selective Through-Thickness Reinforcement promise to increase the ultimate load that the structure can bear, whilst reducing manufacturing complexity, increasing the load carrying capability and facilitating the automated production of parts of the composite structure. This paper provides an overview of the currently available methods for creating intersections within composite structures and compares them to alternatives involving the use of 3D woven connectors, and the application of selective Through-Thickness Reinforcement for enhanced damage tolerance. The use of tufts is investigated, and their effect on the load carrying ability of the structure is examined. The results of mechanical tests are presented for each of the methods described, and their failure characteristics examined.

Effect of fiber-matrix adhesion on the fracture behavior of a carbon fiber reinforced thermoplastic-modified epoxy matrix

  • Carrillo-Escalante, H.J.;Alvarez-Castillo, A.;Valadez-Gonzalez, A.;Herrera-Franco, P. J.
    • Carbon letters
    • /
    • 제19권
    • /
    • pp.47-56
    • /
    • 2016
  • In this study, the fracture behavior of a thermoplastic-modified epoxy resin reinforced with continuous carbon fibers for two levels of fiber-matrix adhesion was performed. A carbon fiber with commercial sizing was used and also treated with a known silane, (3-glycidoxy propyl trimethoxysilane) coupling agent. Toughness was determined using the double cantilever test, together with surface analysis after failure using scanning electron microscope. The presence of polysulfone particles improved the fracture behavior of the composite, but fiber-matrix adhesion seemed to play a very important role in the performance of the composite material. There appeared to be a synergy between the matrix modifier and the fiber-matrix adhesion coupling agent.

TiAIN 코팅한 핵연료봉 피복재의 프레팅 마멸 평가 (Fretting Wear Evaluation of TiAIN Coated Nuclear Fuel Rod Cladding Materials)

  • 김태형;김석삼
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 제35회 춘계학술대회
    • /
    • pp.88-95
    • /
    • 2002
  • Fretting of fuel rod cladding material, Zircaloy-4 Tube, in PWR nuclear power plants must be reduced and avoided. Nowadays the introduction of surface treatments or coatings is expected to bean ideal solution to fretting damage since fretting is closely related to wear, corrosion and fatigue. Therefore, in this study the fretting wear experiment was peformed using TiAIN coated Zircaloy-4 tube as the fuel rod cladding and uncoated Zircaioy-4 tube as one of grids, especially concentrating on the sliding component. Fretting wear resistance of TiAIN coated Zircaloy-4 tubes was improved compared with that of TiN coated tubes and uncoated tubes and the fretting wear mechanisms were delamination and plastic flow following by brittle fracture at lower slip amplitude but severe oxidation and spallation of oxidative layer at higher slip amplitude.

  • PDF

탄소섬유 보강부재의 단부탈락 방지 방안에 관한 실험적 연구 (An Experimental Study to Prevent the Delamination of the CFS with End-Anchorages)

  • 김두벽;이우철;정진환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.991-996
    • /
    • 2001
  • The strengthening of concrete structures in situ with externally bonded fiber sheets is increasingly being used for repair and rehabilitation of existing structures. Because fiber sheets is attractive for this application due to its good tensile strength, resistance to corrosion, and low weight. But, debonding failure may occur at the beam ends that fiber sheet bonded to the soffit of a beam. The method which can prevent debonding failure is suggested and proved its efficiency by using CPS experimental test. And this paper summarized the results of experimental studies concerning the end-anchorage system. Results show that the suggested method is faithful in strengthening with CFS.

  • PDF

경사기능성 세라믹/ 금속 복합재료의 열충격특성에 관한 연구 (A Study on Thermal Shock Characteristics of Functionally Gradient Ceramic/Metal Composites)

  • 송준희;임재규
    • 대한기계학회논문집A
    • /
    • 제20권7호
    • /
    • pp.2134-2140
    • /
    • 1996
  • This study was carried out to anlayze the heat-resistant characteristics of functionally gradient material(FGM) composed with ceramic and metal. The thermal fracture behavior of plasma-sprayed FGM and conventional coating material(NFGM) was exaimined by acoustic emession technique under heating and cooling. Furnace cooling and rapid cooling tests were used to examine the effect of temperature change under various conditions, respectively. At the high temperature above $800^{\circ}C$, it was shown that FGM gives higher thermal resistance compared to NFGM by AE signal and fracture surface analysis.

구름계의 미소조직 변화와 구름운동의 상호관계 (Relationship between Rolling Motion and Microstructural Change in Rolling Element)

  • 차금환;김대은
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1996년도 제24회 추계학술대회
    • /
    • pp.163-167
    • /
    • 1996
  • The life of rolling elements depends on various factors such as operating conditions and material properties. In this work, the effect of microstructure on the rolling behavior is investigated. Specially, the deformations in the substrate regions before and after rolling are compared. It is found that rolling action causes severe flow of material in the direction opposite to the rolling direction in the case of dry rolling direction. With lubrication, the deformation is more severe at the subsurface region rather than at the surface.

  • PDF