• Title/Summary/Keyword: delamination life

Search Result 55, Processing Time 0.019 seconds

A Study on the Failure Mode of FRP Bridge Deck in It's Weak Axis (FRP 바닥판의 약축방향 파괴모드에 관한 연구)

  • Kim Byeong-Min;Hwang Yoon-Koog;Lee Young-Ho;Kang Young-Jong;Zi Goang-Seup
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.73-83
    • /
    • 2006
  • The failure mechanism of a hollow bridge deck which is made of fiber reinforced polymer (FRP) to improve its durability and life time significantly is investigated using both experiments and analyses. While the Load-displacement behavior of the deck in the longitudinal direction is almost linear just before the failure, the behavior in the transverse direction shows a strong nonlinearity even in its initial response with relatively small magnitude of loads. We found that the nonlinearity is due to the imperfection of the connection between the flange and the web; a plastic deformation can t라e place in the connection. The argument is demonstrated using a simple structural model in which a rigid plastic hinge is introduced to the connection. We also checked the contribution of the delamination mechanism to the failure. But the delamination is not the main mechanism which initiates and causes the failure of the bridge deck. In order to improved the structural behavior of the deck in the transverse direction, we suggested that the empty space of the bridge deck is filled with a foam and confirmed the improved behavior by a numerical analysis.

Manufacturing and Properties of Bi-Sn Impregnated Wood Composites of Juglans nigra (북미산 흑호두나무 Bi-Sn 용융합금 복합체의 제조와 특성)

  • Kang, Seog-Goo;Park, Kye-Shin;Lee, Ho;Seo, In-Soo;Lee, Jong-Shin;Lee, Hwa-Hyoung
    • Journal of the Korea Furniture Society
    • /
    • v.22 no.1
    • /
    • pp.54-62
    • /
    • 2011
  • The metalized wood composites with natural grain of imported Juglans nigra, which was impregnated with low melting alloy were manufactured and evaluated in this study. And the proper manufacturing conditions was also investigated in this study. The low melting alloy with bismuth (Bi) and tin (Sn) which are harmless to humans, was applied to this new composites. The composites showed not only no defects of discoloration, delamination, swelling, and cracking, because of high dimensional stability and low thickness swelling, but also much improved performance such as high bending strength, high hardness, abrasion resistance, high thermal conductivity as floor materials. This study also suggested the proper impregnating condition, such as 10 minutes of the preliminary vacuum time, $186^{\circ}C$ of the heating temperature and 10 minutes of the maintaining pressure time at the pressure of $30kgf/cm^2$. This metalized wood composites showed 7 times higher density than control, great increase in bending strength from $131.8N/mm^2$ to $192.3N/mm^2$, and great increase in hardness from $18.2N/mm^2$ to $90.4N/mm^2$. The composites demonstrated not only high emissivity of 91%, high shilding effectiveness of 92.59∼99.99%, high fire resistance but also great decrease in abrasion depth, water absorption and thickness swelling.

  • PDF

A study on the orthogonal cutting characteristics of glass fiber reinforced plastics (복합재료의 직교 절삭가공 특성에 관한 연구)

  • 송화용;정용운;김준현;김주현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.155-160
    • /
    • 2001
  • In the use of glass fiber reinforced plastics(GFRP) it is often necessary to cut the components, but the cutting of GFRP is often made difficult by the delamination of the compositions and short tool life. Experimental investigation was conducted to evaluate the chip formation of the glass fiber reinforced plastics during orthogonal cutting. The chip formation process, cutting force, and thrust force were studied. The chip formation processes were studied through the use of quick-stop device. Chip-tool contact areas were obtained with the use of the quick-stop device, and observed using optical microscopy after polishing. Cutting force and thrust force were measured through the use of the tool dynamometer.

  • PDF

Relationship between Rolling Motion and Microstructural Change in Rolling Element (구름계의 미소조직 변화와 구름운동의 상호관계)

  • 차금환;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.163-167
    • /
    • 1996
  • The life of rolling elements depends on various factors such as operating conditions and material properties. In this work, the effect of microstructure on the rolling behavior is investigated. Specially, the deformations in the substrate regions before and after rolling are compared. It is found that rolling action causes severe flow of material in the direction opposite to the rolling direction in the case of dry rolling direction. With lubrication, the deformation is more severe at the subsurface region rather than at the surface.

  • PDF

A Study on The Insulation Diagnostic and Life Evaluation for the Pumped Storage Generator/Motor (양수 발전 전동기 고정자 권선 절연진단 및 수명평가에 관한 연구)

  • Park, Jong-Jeong;Kim, Hee-Dong;Lee, Young-Jun;Ju, Young-Ho;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1717-1720
    • /
    • 1998
  • In pumped storage Generator-motor stator windings gradually deteriorates due to mechanist, thermal, electrical stresses. These stresses combine to result in loose windings, delamination of the stator insulation and/or electrical tracking of the endwinding, all of which can lead to stator insulation failures. Since the degration of generator-motor is gradually occurred, regular inspection system is necessary to monitor degrading. The result of this diagnosis is a basic for the maintxnance of generator-motor.

  • PDF

A Study on Ultrasonic Vibration Cutting of Carbon Fiber Reinforced Plastics (탄소섬유강화 플라스틱의 초음파 진동절삭에 관한 연구)

  • 김정두;이은상;최인휴
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.24-33
    • /
    • 1994
  • The main applications of CFRP are sports, aerospace and general industrial uses including automobiles. As this application fields expands the opportunity of machining, but CFRP is difficult to cut because of delamination of the composites and the short tool life. In this paper, the machinability of multidirectional CFRP by means of ultrasonic vibration cutting, which has been verified experimentally investigated.The experimentally to be highly effective in view of cutting force and surface quality.

A Study on the Cutting Characteristics of Glass Fiber Reinforced Plastics by Tool Materials and Type (유리섬유강화 플라스틱의 공구재질 및 형상에 따른 절삭특성에 관한 연구)

  • An, Sang-Ook;Noh, Sang-Lai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1216-1224
    • /
    • 1996
  • In the use of glass fiber reinforced plastics it is often necessary to cutting the components, but the cutting GFRP is often made difficult by the delamination of composites and the short tool life. In this paper, the machinability of GFRP by mean of tool materials and type was experimentally investigated. By proper selection of cutting tool material and type excellent machining of this workpiece is achieved. The surface quality relate closely with the feed rate and cutting tools.

Numerical modeling of concrete cover cracking due to steel reinforcing bars corrosion

  • Mirzaee, Mohammad Javad;Alaee, Farshid Jandaghi;Hajsadeghi, Mohammad;Zirakian, Tadeh
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.693-700
    • /
    • 2017
  • Concrete cover cracking due to the corrosion of steel reinforcing bars is one of the main causes of deterioration in Reinforced Concrete (RC) structures. The oxidation level of the bars causes varying levels of expansion. The rebar expansions could lead to through-thickness cracking of the concrete cover, where depending on the cracking characteristics, the service life of the structures would be affected. In this paper, the effect of geometrical and material parameters, i.e., concrete cover thickness, reinforcing bar diameter, and concrete tensile strength, on the required pressure for concrete cover cracking due to corrosion has been investigated through detailed numerical simulations. ABAQUS finite element software is employed as a modeling platform where the concrete cracking is simulated by means of eXtended Finite Element Method (XFEM). The accuracy of the numerical simulations is verified by comparing the numerical results with experimental data obtained from the literature. Using a previously proposed empirical equation and the numerical model, the time from corrosion initiation to the cover cracking is predicted and then compared to the respective experimental data. Finally, a parametric study is undertaken to determine the optimum ratio of the rebar diameter to the reinforcing bars spacing in order to avoid concrete cover delamination.

Effect of Ground Calcium Carbonate Modified by Washless Multilayering of Polyelectrolytes on Paper Quality (무세척 고분자전해질 다층흡착 처리된 중질탄산칼슘이 종이의 품질에 미치는 영향)

  • Lee, Jegon;Im, Wanhee;Sim, Kyujeong;Lee, Hak Lae;Youn, Hye Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.4
    • /
    • pp.115-126
    • /
    • 2015
  • In this study, we investigated influence of ground calcium carbonate (GCC) modified by washless multilayering of polyelectrolytes on paper quality. Three layers of polyelectrolytes (cationic starch/anionic polyacrylamide/cationic starch) were formed on the surface of GCC using laboratory inline washless polyelectrolytes multilayering system, which was called inline LbL GCC. Base papers were prepared with untreated GCC or inline LbL GCC using a laboratory handsheet former. These handsheets were coated with rod coater, and then printed by black ink. Properties of base paper and fold crack of coated paper were evaluated. Base paper with inline LbL GCC showed much higher mechanical strength in terms of tensile index, strain, internal bond strength, and folding endurance. The fold crack of coated paper with inline LbL GCC occurred more frequently compared to coated paper with untreated GCC. This might be due to highly improved internal bond strength of base paper, which resulted in smaller delamination that played a role of stress dissipation. It would be recommended to design a proper coating layer in order to prevent fold crack.

Development of Bamboo Zephyr Composite and the Physical and Mechanical Properties

  • SUMARDI, Ihak;ALAMSYAH, Eka Mulya;SUHAYA, Yoyo;DUNGANI, Rudi;SULASTININGSIH, Ignasia Maria;PRAMESTIE, Syahdilla Risandra
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.2
    • /
    • pp.134-147
    • /
    • 2022
  • The objective of this study is to determine the effect of fiber direction arrangement and layer composition of hybrid bamboo laminate boards on the physical and mechanical properties. The raw material used was tali bamboo (Gigantochloa apus (J.A. & J.H. Schultes) Kurs) rope in the form of flat sheets (zephyr) and falcata veneer (Paraserianthes falcataria (L) Nielsen). Zephyr bamboo was arranged in three layers using water-based isocyanate polymer (WBPI) with a glue spread rate of 300 g/m2. There were variations in the substitution of the core layer with falcata veneers (hybrid) as much as two layers and using a glue spread rate of 170 g/m2. The laminated bamboo board was cold-pressed at a pressure of 22.2 kgf/cm2 for 1 h, and the physical and mechanical properties were evaluated. The results showed that the arrangement of the fiber direction significantly affected the dimensional stability, modulus of rupture, modulus of elasticity, shear strength, and screw withdrawal strength. However, the composition of the layers had no significant effect on the physical and mechanical properties. The bonding quality of bamboo laminate boards with WBPI was considered to be quite good, as shown by the absence of delamination in all test samples. The bamboo hybrid laminate board can be an alternative based on the physical and mechanical properties that can meet laminated board standards.