• Title/Summary/Keyword: delamination

Search Result 991, Processing Time 0.026 seconds

Experimental Study for Defects Inspection of CFRP Using Laser-Generated Ultrasound

  • Lee, Joon-Hyun;Park, Won-Su;Byun, Joon-Hyung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.41-45
    • /
    • 2006
  • The fabrication process of fiber placement system of carbon fiber reinforced plastic (CFRP) requires real time process control and reliable inspection to ensure quality by preventing defects such as delamination and void. Therefore, novel non-contact inspection technique is required during the non-destructive evaluation in a fiber placement system. For the inspection of delamination in CFRP, various methods to receive laser-generated ultrasound were applied by using piezoelectric transducer, air-coupled transducer, wavelet transform and scanning laser ultrasonic technique. Laser-generated ultrasound was received with a conventional piezoelectric sensor in contacting manner. Then signal characteristics due to defects were analyzed to find a factor for detecting defects. Air-coupled transducer was used for reception of laser-generated guided wave using linear slit array in order to generate high frequency guided wave. And line scan technique was used to confirm the capability of on-line application. The high frequency component of laser-generated guided wave received with piezoelectric sensor disappeared after propagating through delamination region. Nevertheless, it was failed to receive high frequency guided wave in using air-coupled transducer. The first peak of the frequency spectrum under 100kHz in the delamination region is higher than in the sound region. By using this feature, the line scanned frequency data were acquired in fully non-contact generation and reception of ultrasound. This method was proved as useful technique for detecting delamination in CFRP.

  • PDF

A Study on compressive behavior of laminated plates with initial delamination (박리가 발생된 적층평판의 압축 거동에 관한 연구)

  • Lee, Nam-Ju;Jo, Yong-Oug
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.167-174
    • /
    • 2016
  • Recently laminated plates like composite materials has been used in a various field to grow the specific strength of the composition. However, delamination area caused by barely visible impact damage has potential risk that it can raise buckling of the delaminated plate. Because it can interrupt compressive behavior of laminated plates and reduce their strength, the whole structure can't be constituted by these materials. Many studies assume that behavior of the delaminated plate which is in lamanated plates equals theoretical buckling but their actual motion doesn't coincide because of initial imperfections of materials like deflection, residual stress, eccentricity and so on. In this paper, we change laminated plates with initial delamination into a beam of rectangular cross section with the initial crack and analyze compressive behavior according to initial imperfections through finite element method(FEM). Consequently analysis results show that behavior of laminated plates involving delamination differs from ideal buckling of the delaminated plate in actual conditions and we can predict its motion through imperfections relationship.

  • PDF

Multilayered frame structure subjected to non-linear creep: A delamination analysis

  • Rizov, Victor I.;Altenbach, Holm
    • Coupled systems mechanics
    • /
    • v.11 no.3
    • /
    • pp.217-231
    • /
    • 2022
  • The present paper is concerned with a delamination analysis of a multilayered frame structure that exhibits non-linear creep behavior. A solution to the strain energy release rate is obtained by considering the time-dependent complementary strain energy in the frame. The mechanical behavior of the frame is treated by using a non-linear stress-strain-time relationship. The time-dependent solution to the strain energy release rate obtained in the present paper holds for a multilayered frame made of arbitrary number of adhesively bonded layers of different thicknesses and material properties. Besides, the dealamination is located arbitrary along the thickness. The solution to the strain energy release rate is verifiedby applying the J-integral approach. A parametric study of the strain energy release rate is carried-out. Two three-layered frame configurations are analyzed in order to evaluate the influence of the delamination crack location along the thickness on the strain energy release rate. The strain energy release is analyzed also for the case when a notch is cut-out in the inner delamination crack arm. The results obtained are compared with these for a frame without a notch.

Comparison of Machining Defects by Cutting Condition in Hybird FRP Drilling (유리탄소섬유 하이브리드 복합재의 절삭 조건에 따른 가공 결함 비교)

  • Baek, Jong-Hyun;Kim, Su-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.12-20
    • /
    • 2022
  • Delamination and burr defects are important problems in drilling fiber reinforced plastics. A method for measuring FRP drilling defects has been studied. Delamination and burr factors were defined as the relative length or area. Using these factors, the effects of tool shape and drilling conditions on delamination and burr were studied. In this study, the defects that occur when drilling a glass-carbon fiber hybrid composite were compared in terms of three factors. In the glass-carbon fiber hybrid composite, the effects of the feed rate and tool point angle on the delamination and burr factors were similar to those in previous studies. The diameter of the tool did not affect the defect factor. A circular burr was generated in a drill tool with a point angle of 184°, and a relatively small deburring factor was observed compared with a tool with a point angle of 140°.

Delamination of non-linear viscoelastic beams under bending in the plane of layers

  • Victor I. Rizov
    • Coupled systems mechanics
    • /
    • v.12 no.4
    • /
    • pp.297-313
    • /
    • 2023
  • This paper deals with delamination analysis of non-linear viscoelastic multilayered beam subjected to bending in the plane of the layers. For this purpose, first, a non-linear viscoelastic model is presented. In order to take into account the non-linear viscoelastic behaviour, a non-linear spring and a non-linear dashpot are assembled in series with a linear spring connected in parallel to a linear dashpot. The behaviours of the non-linear spring and dashpot are described by applying non-linear stress-strain and stress-rate of strain relationships, respectively. The constitutive law of the model is derived. Due to the non-linear spring and dashpot, the constitutive law is non-linear. This law is used for describing the time-dependent mechanical behaviour of the beam under consideration. The material properties involved in the constitutive law vary along the beam length due to the continuous material inhomogeneity of the layers. Solution of the strain energy release rate for the delamination is obtained by analyzing the balance of the energy with considering of the non-linear viscoelastic behaviour. The strain energy release rate is found also by using the complementary strain energy for verification. A parametric study is carried-out by using the solution obtained. The solutions derived and the results obtained help to understand the time-dependent delamination of non-linear viscoelastic beams under loading in the plane of layers.

Closed-form solution for the buckling behavior of the delaminated FRP plates with a rectangular hole using super-elastic SMA stitches

  • Soltanieh, Ghazaleh;Yam, Michael CH.;Zhang, Jing-Zhou;Ke, Ke
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.39-50
    • /
    • 2022
  • Layer separation (delamination) is an essential threat to fiber-reinforced polymer (FRP) plates under dynamic, static, and fatigue loads. Under compressive load, the growth of delamination will lead to structural instability. The aim of this paper is to present a method using shape memory alloy (SMA) stitches to suppress the delamination growth in a FRP plate and to improve the buckling behavior of the plate with a rectangular hole. The present paper is divided into two parts. Firstly, a closed-form (CF) formulation for evaluating the buckling load of the FRP plate is presented. Secondly, the finite element method (FEM) will be employed to calculate the buckling loads of the plates which serves to validate the results obtained from the closed-form method. The novelty of this work is the development of the closed-form solution using the p-Ritz energy approach regarding the stress-dependent phase transformation of SMA to trace the equilibrium path. For the FEM, the Lagoudas constitutive model of the SMA material is implemented in FORTRAN programming language using a user material subroutines (VUMAT). The model is simulated in ABAQUS/Explicit solver due to the nature of the loading type. The cohesive zone model (CZM) is applied to simulate the delamination growth.

Enhancing Structural Integrity of Composite Sandwich Beams Using Viscoelastic Bonding with Tapered Epoxy Reinforcement

  • Rajesh Lalsing Shirale;Surekha Anil Bhalchandra
    • Korean Journal of Materials Research
    • /
    • v.34 no.3
    • /
    • pp.125-137
    • /
    • 2024
  • Composite laminates are used in a wide range of applications including defense, automotive, aviation and aerospace, marine, wind energy, and recreational sporting goods. These composite beams still exhibit problems such as buckling, local deformations, and interlaminar delamination. To overcome these drawbacks, a novel viscoelastic autoclave bonding with tapered epoxy reinforcement polyurethane films is proposed. In existing laminates, compression face wrinkling and interlaminar delamination is caused in the sandwich beam. The unique viscoelastic autoclave spunbond interlayer bonding is designed to prevent face wrinkling and absorb and distribute stresses induced by external loads, thereby eliminating interlaminar delamination in the sandwich beam. Also, the existing special reinforcement causes stress concentrations, and the core is not effectively connected, which directly affects the stiffness of the beam. To address this, a novel tapered epoxy polyurethane reinforcement adhesive film is proposed, whose reinforcement thickness gradually tapers as it enters the core material. This minimizes stress concentrations at the interface, preventing excessive adhesive squeeze-out during the bonding process, and improves the stiffness of the beam. Results indicate the proposed model avoids the formation of micro cracks, interlaminar delamination, buckling, and local deformations, and effectively improves the stiffness of the beam.

A micridefects determination method of the interface by ultrasonic testing image processing (초음파탐상 화상에 의한 이종재 경계면의 미소결함 결정법)

  • 김재열;박환규;조의일
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.107-116
    • /
    • 1992
  • Recently, it is gradually raised necessity that interface is measured accurately and managed in industrial circle and medical world. An Ultrasonic wave transmitted from a focused beam tranducer is being expected as a powerful tool for NDE of the delamination. The Ultrasonic NDE of the delamination is based on the form of the wave reflected from the interface. In this study results, automatically repeated discrimination analysis method can be devided in the category of all kinds of defects on semiconductor package, and also can be possible to have a sampling of partial delamination.

  • PDF

Critical thrust force and feed rate determination in drilling of GFRP laminate with backup plate

  • Heidary, Hossein;Mehrpouya, Mohammad A.;Saghafi, Hamed;Minak, Giangiacomo
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.631-640
    • /
    • 2020
  • Using backup plate is one of the most commonly used methods to decrease drilling-induced delamination of composite laminates. It has been shown that, the size of the delamination zone is related to the vertical element of cutting force named as thrust force. Also, direct control of thrust force is not a routine task, because, it depends on both drilling parameters and mechanical properties of the composite laminate. In this research, critical feed rate and thrust force are predicted analytically for delamination initiation in drilling of composite laminates with backup plate. Three common theories, linear elastic fracture mechanics, classical laminated plate and mechanics of oblique cutting, are used to model the problem. Based on the proposed analytical model, the effect of drill radius, chisel edge size, and backup plate size on the critical thrust force and feed rate are investigated. Experimental tests were carried out to prove analytical model.