• Title/Summary/Keyword: dehumidification

Search Result 171, Processing Time 0.049 seconds

Heat and Mass Transfer Characteristics of LiCl Aqueous Solution for a Plate Heat Exchanger Type Dehumidifier (판형 열교환기식 제습기에서 LiCl 수용액의 열 및 물질전달 특성)

  • Jeon, Dong-Soon;Lee, Hae-Seung;Kim, Seon-Chang;Kim, Young-Lyoul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.1
    • /
    • pp.16-22
    • /
    • 2012
  • Experimental investigations were carried out to examine the heat and mass transfer characteristics of LiCl aqueous solution for a plate heat exchanger type dehumidifier. Cooling dehumidification was adopted vertical type heat exchanger. Also non woven fabric is attached surface of the heat exchanger for spreadability of LiCl aqueous solution. Mass flow-rate of LiCl aqueous solution and concentration were selected as experimental conditions. Also, In this study, the effects of relative humidity of process air and velocity were investigated experimentally. As a result of heat transfer coefficient and mass transfer coefficient of were increased film reynolds number increased. heat transfer coefficient and mass transfer coefficient of LiCl aqueous solution were 0.14~0.24 kW/$m2^{\circ}C$ and $1.3{\times}10-63{\sim}6.2{\times}10-6$ m/s respectively.

Development of Dehumidifier for Protected Horticulture (시설원예용 제습기 개발)

  • Yon K.S.;Kang G.C.;Kang Y.K.;Ryou Y.S.;Kim Y.J.;Paek Y.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.2 s.109
    • /
    • pp.110-113
    • /
    • 2005
  • Relative humidity of air In the greenhouse has to be maintained at 70 to 80 percents to provide a better growth condition of crops. To control relative humidity of air in the greenhouse, a dehumidifier functioning by refrigeration cycle was designed and manufactured in this study. And, results of its performance test in the greenhouse site were reported. The developed dehumidifier has separated condenser and evaporator in the heat exchanger part in order to increase dehumidifying capacity at a low temperature condition. When the conditions of incoming air into the dehumidifier were temperature of $15\~25^{\circ}C$ and relative humidity of $0\~95\%$, quantity of condensed water per hour, ie, dehumidification rate was $4.7\~7.0\;kg/hr$. Relative humidity difference was not greater than 5 percents at various locations in the greenhouse due to proper distributing of dehumidified air through vinyl duct. Thermal energy output from the developed dehumidifier was about 8,5000 kcal/hr that was 7 percents of maximum greenhouse heating load of 10 a.

Research on the Performance of a Solar Air Conditioning System using a Liquid Desiccant in Summer (액체흡수제 이용 태양열 공조시스템의 하계 능력에 관한 연구)

  • Choi, K.H.;Yoon, J.I.;Kim, B.C.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.2
    • /
    • pp.33-38
    • /
    • 2002
  • In order to find out whether solar air conditioning system could be applied to building or not, the performance and evaluation on thermal environment of the system suggested was done during summer. A solar model house was constructed to find out the performance and thermal environment evaluation when it actually operated outside. As a result, regeneration rate increased rapidly when LiCl solution temperature was over $50^{\circ}C$ and the regeneration rate was $13\sim15kg$ during 9 hours operation. Furthermore the dehumidification rate was 12kg at maximum during 10 hours operating of a dehumidifier and indoor temperature and relative humidity was $28.4^{\circ}C$ and 39.1% in average respectively. On evaluation of thermal environment during summer, PMV value was slightly high, but thermal sensation vote was 71% within the comfort zone.

Comparison of Optimum Design due to the Structure of the Regenerative Evaporative Cooler (재생증발실 냉각기의 구조에 따른 최적설계 비교)

  • Choi, Bong-Su;Hong, Hi-Ki;Lee, Dae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.359-364
    • /
    • 2005
  • In dehumidification evaporation cooling system. the regeneratie evaporative cooler(REC) makes an important role to reduce the sensible cooling load in the system through evaporative cooling, By this reason, many studies about increasing the cooling capacity of the REC were undertook. In this paper, we analyzed the cooling characteristics of the REC due to the structures of the REC and determined the best structure for the REC's effectiveness and cooling capacity. From the study. we could obtain some important results: at first. corrugated type has the benefit to expand the channel width of the REC, But because the type has some weak points about the size and weight. there is almost no benefit to improve the performance of the REC. Through these reasons. we decided that finned type is the best structure to improve the performance of the REC.

  • PDF

Theoretical and Experimental Considerations of Thermal Humidity Characteristics

  • Choi, Seok-Weon;Cho, Ju-Hyeong;Seo, Hee-Jun;Lee, Sang-Seol
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.9-18
    • /
    • 2002
  • Thermal humidity characteristics were considered theoretically and experimentally. A Simply well-fitted correlation of a saturated vapor pressure-temperature curve of water was introduced based on Antoine equation to make theoretical prediction of relative humidity according to temperature variation. Characteristics of dew point were also examined theoretically and its relation with temperature and humidity was evaluated. The exact mass of water vapor in a specified humidity and temperature condition was estimated to provide useful insight into the idea about how much amount of water corresponds to a specified humidity and temperature condition in a confined system. A simple but well-fitting model of dehumidification process was introduced to anticipate the trend of relative humidity level during GN2(gaseous nitrogen) purge process in a humidity chamber. Well-suitedness of this model was also verified by comparison with experimental data. The overall appearance and specification of two thermal humidity chambers were introduced which were used to perform various thermal humidity tests in order to yield useful data necessary to support validity of theoretical models.

Optimization of Heat exchanger Capacity to Maximize the Performance and Energy Efficiency of TEM Dehumidifiers (열전모듈 제습기의 제습 능력 및 에너지 효율 극대화를 위한 열교환기 용량 최적화)

  • Lee, Tae-Hee
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.3
    • /
    • pp.13-20
    • /
    • 2021
  • The capacity optimization of the heat exchanger of the TEM dehumidifier was performed through numerical analysis. If the ratio of the size of heat exchangers on the cold and hot surfaces of the TEM is not appropriate, the larger the size of the heat exchanger results the lower performance and efficiency. Optimizing the ratio of heat exchangers on the cold surface of TEM can improve the performance and the efficiency compared to when the ratio is 50%. The optimal proportion of cold surface heat exchangers is inversely proportional to the sum of the size of the heat exchangers on the cold and hot surfaces. When the optimum ratio of cold surface heat exchanger was applied, the larger the sum of size of the two heat exchangers results the greater the improvement of the performance and efficiency, compared to when the ratio of cold surface heat exchangers is 50%.

Developing Trend of Gas Separation Membrane for Dehumidification (제습용 기체분리막 개발동향)

  • Koh, Hyungchul;Lee, Choongsup;Ha, Seong Yong;Choi, Whee Moon;Rhim, Jiwon;Nam, Sangyong
    • Prospectives of Industrial Chemistry
    • /
    • v.14 no.3
    • /
    • pp.25-36
    • /
    • 2011
  • 압축공기 중의 수분은 공압설비의 모든 요소에 중대한 해를 입히며 밸브의 고착, 계기의 막힘 또는 공압기기의 오작동을 일으키며 생산하는 제품의 질에 있어서도 많은 해를 입혀서 제품의 질을 떨어뜨리는 역할을 하게 된다. 따라서 수분을 제거하는 방법이 필요하며 기존의 냉동식 및 흡착식을 대신하여 분리막 법이 적용될 수 있다. 현재 제습용 기체분리막 모듈은 적용이 시작된 단계에 있다. 제습용 기체분리막은 의료기기, 분석기기, Instrument air 장비에 응용이 진행되고 있다. 최근 들어 선진각국 뿐만 아니라 국내에서도 막소재 개발, 복합막 개발, 모듈 개발, 시스템 설계 및 제작 기술 개발이 진행되고 있다. 현재로서는 제습막공정에 적합한 막소재의 개발이 시급하지만 이후 적용확대를 위해서는 제습용 기체분리막의 신뢰성 향상을 위한 다각도의 노력이 필요하다.

Study on Performance and Analysis of PF Heat Exchanger for Heat Pump Dryer (히트펌프 건조기용 PF 열교환기 성능 및 해석 연구)

  • Kim, Ki-Young;Lee, Seok-Hyun;Kwon, Young-Chul;Chun, Chong-Keun;Park, Sam-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1576-1581
    • /
    • 2013
  • In the present study, the performance of a PF heat exchanger for heat pump dryer was investigated. Capacity and dehumidification amount of the PF heat exchangers(PF1, PF2, PF3) by different inclination angles($0^{\circ}$, $30^{\circ}$, $60^{\circ}$) were studied. Experimental conditions were an air velocity crossing to the heat exchanger(0.5m/s), an air dry-bulb temperature($60^{\circ}C$) and relative humidity(70%). The experimental results have shown that the performance of the inclined PF heat exchangers was better than that of the vertically installed one. PF3 showed better performance compared to PF1 and PF2 due to the large pin pitch which are leading to more draining for dehumidified water. But, capacity and dehumidification amount of the PF heat exchanger at the inclination angles of $60^{\circ}$ was decreased due to pressure drop. Also, to predict the experimental data of the PF heat exchanger, the performance program was developed for the inclination angles of $0^{\circ}$. PF heat exchanger performance between experiment data and calculation data was satisfied within the maximum 2% for capacity and 3% for dehumidification amount.