• Title/Summary/Keyword: degree of weathering

Search Result 160, Processing Time 0.023 seconds

Weathering Indexes of Typical Pedons Derived from Different Parent Materials of the Soils of Korea

  • Jung, Yeong-Sang;Zhang, Yong-Seon;Joo, Jin-Ho;Jung, Yeon-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.3
    • /
    • pp.179-186
    • /
    • 2014
  • Weathering indexes of the typical pedons derived from different parent materials of the soils of Korea were calculated by Kronberg and Nesbitt (1981) to understand weathering degree of the soils which might give a clue of soil formation and characterizing a soil pedon. The weathering index W1 was chemical change index, and the weathering index W2 was silicate dominant index. The chemical compositions of the 49 typic pedons were extracted from the Taxonomical Classification of Korean Soils (NIAST, 1999). The weathering indexes of Kimhae series, derived from fluvio marine material, were the highest among the analyzed soils. Within parent materials, the weathering indexes of the soils derived from limestones parent materials were high, and those derived from phorphyry materials were low. The relationship between W1 and W2 showed unique pattern which implied certain sequence within the same parent materials.

Morphology of Halloysite Particles and Aggregates in the Weathering of Anorthosite (회장암 풍화과정에서 생성되는 할로이사이트 입자 및 집합체의 형태)

  • 정기영;김영호
    • Journal of the Mineralogical Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.64-70
    • /
    • 1996
  • Early weathering products of anorthosite were investigated by using scanning electron microscopy in order to trace the development of halloysite particles and aggregates. Tiny short tubes or spheres precipitate on the plagioclase surface in the initial stage of weathering and form the compact globular aggregates. With continued growth, several globules are coalesced into wrinkled halloysite aggregates, and short tubes or spheres in globules grow into long tubes forming sheaf-like aggregates. Particle shape of halloysite varies with changing supersaturation degree of weathering solution, and determines the morphology of halloysite aggregates.

  • PDF

Rendezvous Mission to Apophis: IV. Investigation of the internal structure - A lesson from an analogical asteroid Itokawa

  • Jin, Sunho;Kim, Yaeji;Jo, Hangbin;Yang, Hongu;Kwon, Yuna G.;Ishiguro, Masateru;Jeong, Minsup;Moon, Hong-Kyu;Choi, Young-Jun;Kim, Myung-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.58.1-59
    • /
    • 2021
  • Exploration of asteroids' internal structure is essential for understanding their evolutional history. It also provides a fundamental information about the history of coalescence and collision of the solar system. Among several models of the internal structures, the rubble-pile model, confirmed by the near-Earth asteroid (25143) Itokawa by Hayabusa mission [1], is now widely regarded as the most common to asteroids with size ranging from 200 m to 10 km [2]. On the contrary, monolithic and core-mantle structures are also possible for small asteroids [3]. It is, however, still challenging to look through the interior of a target object using remote-sensing devices. In this presentation, we introduce our ongoing research conducted at Seoul National and propose an idea to infer the internal structure of Apophis using available instruments. Itokawa's research provides an important benchmark for Apophis exploration because both asteroids have similar size and composition [4][5]. We have conducted research on Itokawa's evolution in terms of collision and space weathering. Space weathering is the surface alteration process caused by solar wind implantation and micrometeorite bombardment [6]. Meanwhile, resurfacing via a collision acts as a counter-process of space weathering by exposing fresh materials under the matured layer and lower the overall degree of space weathering. Therefore, the balance of these two processes determine the space weathering degrees of the asteroid. We focus on the impact evidence on the boulder surface and found that space weathering progresses in only 100-10,000 years and modifies the surface optical properties (Jin & Ishiguro, KAS 2020 Fall Meeting). It is important to note that the timescale is significantly shorter than the Itokawa's age, suggesting that the asteroid can be totally processed by space weathering. Accordingly, our result triggers a further discussion about why Itokawa indicates a moderately fresh spectrum (Sq-type denotes less matured than S-type). For example, Itokawa's smooth terrains show a weaker degree of space weathering than other S-type asteroids [7]. We conjecture that the global seismic shaking caused by collisions with >1 mm-sized interplanetary dust particles induces granular convection, which hinders the progression of space weathering [8]. Note that the efficiency of seismic wave propagation is strongly dependent on the internal structure of the asteroid. Finally, we consider possible approaches to investigate Apophis's internal structure. The first idea is studying the space weathering age, as conducted for Itokawa. If Apophis indicates a younger age, the internal structure would have more voids [9]. In addition, the 2029 close encounter with Earth provides a rare natural opportunity to witness the contrast between before and after the event. If the asteroid exhibits a slight change in shape and space weathering degree, one can determine the physical structure of the internal materials (e.g., rubble-pile monolithic, thick or thin regolith layer, the cohesion of the materials). We will also consider a possible science using a seismometer.

  • PDF

Physical and Chemical Weathering Indices for Biotite Granite and Granitic Weathered Soil in Gyeongju

  • Ban, Jae-Doo;Moon, Seong-Woo;Lee, Seong-Won;Lee, Joo-Gong;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.451-462
    • /
    • 2017
  • Physical weathering caused by external forces and chemical weathering caused by the decomposition or alteration of constituent materials are the two factors that dominate the mechanical properties of rocks. In this study, a field investigation was undertaken to identify the physical and chemical weathering characteristics of the biotite granite and granitic weathered soils in Gyeongju, South Korea. Samples were collected according to their grade of weathering and subjected to modal analysis, XRD analysis, XRF analysis, physical property tests, particle size distribution tests, and slake durability tests. Modal and XRD analysis identified these rocks as biotite granite; secondary alteration minerals were not observed. Physical property tests and particle size distribution analyses indicate an average porosity of 41.28% and a sand content of > 90 wt.%. These values are somewhat higher than those of granites in general. The results of the slake durability test and XRF analyses show that the physical and chemical weathering indices of the samples vary with the degree of weathering.

The Estimation of the Extent of Weathering using Fractal Dimension through a Comparison with Chemical Characteristic (화학적 특성과의 비교 분석을 통한 프랙탈 차원을 이용한 풍화도 추정)

  • Noh, Soo-Kack;Son, Young-Hwan;Bong, Tae-Ho;Park, Jae-Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.127-135
    • /
    • 2012
  • The processes of chemical and physical weathering occur simultaneously. The objective of this study was to estimate the degree weathered using fractal dimension through comparison with chemical characteristic of soil samples from Pohang (PH) and Kimpo (KP). Comparing chemical characteristics with fractal dimension, $SiO_2$, $Na_2O$, $K_2O$ content decreased and loss of ignition increased as fractal dimension increased. And fractal dimension showed high correlation with CWI while ATI, STI CIW, PI, CIA and RR demonstrated different degrees of correlation with fractal dimension. The tendency of the changes in oxide content and chemical weathering index with increasing fractal dimension appeared to be similar with the chemical changes due to weathering. Therefore, fractal dimension could be a good indicator representing the extent of weathering and chemical changes.

Study of the Accelerated Weathering of Sitka spruce under Acidic Conditions (산성(酸性) 조건하(條件下)에서 Sitka spruce의 기상(氣象) 열화(劣化) 가속(加速)에 관(關)한 연구(硏究))

  • Kim, Jae-Jin;Kim, Gyu-Hyeok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.9-14
    • /
    • 1993
  • Weathering of wood in a region of acid rain was performed by the test which thin veneers of Sitka spruce were exposed to outdoor weathering for a total of 18 weeks, with a daily soaking for 30 minutes in acidified water in the pH range 2~5.6. The weathering measured by weight loss and loss in maximum failure load in tension was accelerated by the increase in the acidity of acidified water and in the period of outdoor exposure. It was also shown that the weathering was accelerated even with low acidic conditions in the case of long exposure period, although the weathering was rapidly accelerated with high acidic conditions. When compared the degree of weight loss with that of loss in failure load by weathering, the latter was much greater. From the results of this research, it could be concluded that at pH 4.0 or below of precipitation, the acceleration of weathering of exterior wood would become serious problems, which would be caused deterioration in performance of exterior wood.

  • PDF

Investigation on Weathering Degree and Shear Wave Velocity of Decomposed Granite Layer in Hongsung (홍성 지역 화강 풍화 지층의 풍화도 및 전단파 속도에 관한 고찰)

  • Sun, Chang-Guk;Kim, Bo-Hyun;Chung, Choong-Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.431-443
    • /
    • 2006
  • As part of a fundamental characterization for subsurface layers in Korea, the weathering degree and shear wave velocity ($V_S$) were evaluated from the X-ray fluorescence analyses and the site investigations containing boring and in-situ seismic tests, respectively, for decomposed granite layer in Hongsung. The subsurface layers at Hongsung were composed of 10 to 40 m thickness of weathered layer in most sites. According to the results of weathering degree analyses in Hongsung, it was examined that three chemical weathering indexes such as MWPI, VR and WIP generally increased with decreasing depth. From the in-situ seismic tests, the $V_S$ was determined as the range between 200 and 500 m/s in weathered layer. Based on the $V_S$ and N value at borehole seismic testing sites, N-$V_S$ correlations were established for weathered layer. Furthermore, the relationships of three representative weathering indexes with the $V_S$ and N value indicated that the MWPI, WIP and 100/VR increased linearly as increasing $V_S$ and exponentially as increasing N value.

Study of test method of tracking degradation for polymer insulation (폴리머 애자의 트래킹 열화 평가방법 연구)

  • 심대섭;박병락;박성균;소진중
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.391-394
    • /
    • 2000
  • EPDM/silicone blend was prepared with polyorganosiloxane compatibilizer for out-door polymer insulation used to shed. Each blend had various weight ratios, 100/0, 90/10, 70/30, 50/50, 30/70, 10/90, and 0/100 as EPDM to silicone, and electrical and tracking characteristics were studied with the method of IEC 60587. And also, tracking properties and contact angle related to UV-weathering period were studied to understand the degree of degradation of blend after 1000 h UV-weathering.

  • PDF

A Study of Weathering Characteristics of Cretaceous Granite in Kimhae Area due to Artificial Weathering Processes (인공풍화과정에 의한 김해지역 백악기 화강암의 풍화특성에 관한 연구)

  • Um, Jeong-Gi
    • Tunnel and Underground Space
    • /
    • v.22 no.1
    • /
    • pp.32-42
    • /
    • 2012
  • It is very difficult to capture the weathering characteristics of rock because of limitation caused by time and space. A new scheme of experiment that includes physical and chemical weathering processes was implemented on Cretaceous granitic rock samples from Kimhae area to investigate the variations of geomechanical properties of deteriorated rocks due to artificial weathering processes. The seismic velocity was found to decrease with increasing artificial weathering cycle. Effective porosity and absorption tend to increase with artificial weathering processes. The amount of deterioration of rock samples depend on pre-test degree of weathering. Effective porosity, absorption and seismic velocity can be used as the measure of weathering characteristics of granite in the study area. Weathering is accelerated by combined effect of physical and chemical weathering processes. The new experimental methodology conducted in this study has strong capability to analyze the weathering characteristics of rocks.

Evaluation about Weathering Characteristics of Granite at Sangju Area (상주지역 화강암의 풍화 특성에 대한 평가)

  • Kang, Changwoo;Kim, Bongsu;Son, Kwangrok;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.5
    • /
    • pp.17-25
    • /
    • 2016
  • The rocks exposed on the surface undergo expedite weathering process due to the effects of climatic process, etc. and the weathering process changes the properties of minerals, thereby lowering the stability of rocks. Therefore, it is important to examine the composition of minerals in order to investigate the resistance of rocks against weathering, which is performed by weathering sensitivity analysis. And microscopic flaking test was performed for the bored samples in this study and the composition of minerals that are vulnerable to weathering was measured through mode analysis. The lithological and mineralogical weathering factors were evaluated through this process. Furthermore, the degree of progress of weathering was identified by quantitatively measuring the actual mineral composition of rocks through X-Ray diffraction analysis and identifying the secondary minerals through observation with a scanning electron microscope. This analyzing the weathering sensitivity was analyzed to be capable of determining appropriate indicators that can determine weather resistance and predicting the weathering grade using chemical weathering speed.