• Title/Summary/Keyword: degree of cross-linking

Search Result 61, Processing Time 0.022 seconds

Adhesion Characteristics of Acrylic Pressure Sensitive Adhesives on Thin Wafer Materials - Effect of Acrylic Copolymer Side Chain - (아크릴계 점착제와 초박형 웨이퍼소재와의 점착특성 - 아크릴 중합체의 측쇄의 영향 -)

  • Ryu, Chong-Min;Nam, Young-Hee;Lee, Seung-Hyun;Kim, Hyung-Il;Lim, Dong-Hyuk;Kim, Hyun-Joong;Kim, Kyung Man
    • Journal of Adhesion and Interface
    • /
    • v.10 no.3
    • /
    • pp.134-140
    • /
    • 2009
  • The acrylic copolymers with variation in side chain were synthesized based on molecular design. Wettability and adhesion properties on the wafer surface were investigated for these acrylic copolymer pressure sensitive adhesives. Three-dimensional networks of linear acrylic copolymers were produced with epoxy-type Tetra-DX cross-linking agent. The effect of cross-linking on adhesion characteristics was investigated. The side chain of acrylic copolymer played more important role in wettability than the interfacial interaction. As the degree of cross-linking increased, both probe tack and peel strength decreased. Also, heat resistance measured by SAFT increased with cross-linking; however, it showed the deterioration when excess cross-linking agent was added.

  • PDF

Preparation and Swelling Behavior of Cross-Linked Films of Hydroxypropyl Chitosan Possessing Cholesteric Liquid-Crystalline Order (Cholesteric 액정질서를 지닌 Hydroxypropyl Chitosan 가교필름의 제조와 팽윤거동)

  • 마영대;김경희
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.418-430
    • /
    • 2000
  • A new hydroxylpropyl chitosan (HPCTO) capable of forming both thermotropic and lyotropic liquid crystalline phases was synthesized by reaction of alkali chitosan with propylene oxide and its solid films cross-linked with glyoxal were prepared by casting the liquid crystalline solution in methanol. The thermal and swelling properties of the cross-linked films were investigated. The films displayed fingerprint patterns characteristic of cholesteric liquid-crystalline phase, and their pitches increased with increasing temperature and cross-linker concentration. The cross-linked samples exhibited an anisotropic swelling in both water and methanol, suggesting that the two-dimensional cross-linking preferentially performs between HPCTO molecules. The degree of anisotropy highly depended on the solvent, but hardly on the cross-linker concentration investigated.

  • PDF

Permeation Property of Ionomer Film with New Multifunctional Ionic Site (다관능기를 도입한 아이오노머 필름의 기체투과 특성)

  • Lee, Bo-Mi;Jeong, Sam-Bong;Nam, Sang-Yong
    • Korean Journal of Materials Research
    • /
    • v.22 no.5
    • /
    • pp.227-236
    • /
    • 2012
  • Ionomer is a thermoplastic that is composed of covalent bonds and ionic bonds. It is possible to use this material in processes such as injection molding or extrusion molding due to the material's high oil resistance, weatherproof characteristics, and shock resistance. In this study, a new ionomer having a multifunctional group was prepared by a stepwise neutralization system with the addition of acidic and salt additives. In step I, to increase the contents of the multifunctional group and the acid degree in ethylene acrylic acid (EAA), MGA was added to the ionomer resin (EAA). A new ionomer was prepared via the traditional preparation method of the ionic cross-linking process. In step II, metal salt was added to the mixture of EAA and MGA. The extrusion process was performed using a twin extruder (L/D = 40, size : ${\varphi}30$). Ionomer film was prepared for evaluation of gas permeability by using the compression molding process. The degree of neutralized and ionic cross-linked new ionomer was confirmed by FT-IR and XRD analysis. In order to estimate the neutralization of the new ionomer film, various properties such as gas permeation and mechanical properties were measured. The physical strength and anti-scratch property of the new ionomer were improved with increase of the neutralization degree. The gas barrier property of the new ionomer was improved through the introduction of an ionic site. Also, the ionic degree of cross-linking and gas barrier property of the ionomer membrane prepared by stepwise neutralization were increased.

Immobilization of Thermolysin for Synthesis of Aspartame Precursor (아스파탐 전구체의 합성을 위한 Thermolysin의 고정화)

  • Han, Min-Su;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.753-756
    • /
    • 1995
  • Optimum conditions for immobilization of thermolysin, a metalloendopeptidase catalyzing synthesis of aspartame precursors, were investigated with using Amberlie XAD-7 as carrier and glutaraldehyde as cross-linking agent. Adsorption of thermolysin onto the carrier was rapid at the initial stage and 96% of the enzyme was adsorbed after 24 hours at $5^{\circ}C$. There was a linear relationship between amount of thermolysin adsorbed and thermolysin loaded upto 300g per liter of carrier. The effective range of cross-linking time, concentration of glutaraldehyde and pH for immobilization of the enzyme were $3{\sim}7\;hours,\;6{\sim}12.5%\;and\;pH\;6.0{\sim}7.0$, respectively. Degree of cross-linking and residual enzyme activity were high when cross-linked for 7 hours with 6% glutaraldehyde or for 3 hours with 12.5% glutaraldehyde. The residual enzyme activity was over 30% under these conditions.

  • PDF

Fabrication and Characterization of 3-D Porous Collagen Scaffold (3차원 다공성 콜라겐지지체의 제조 및 특성 분석)

  • Kim, Jin-Tae;Lim, Sumin;Kim, Byoung Soo;Lee, Deuk Yong;Choi, Jae Ha
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.192-196
    • /
    • 2014
  • Collagen scaffolds were synthesized by cross linking into a solution mixture of 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochlorid(EDC) in ethanol, followed by pressing, cleaning and lyophilization process after the type I atelo-collagen solutions in D.I water(pH3). The experimental conditions are collagen concentration of 1.0 wt%, 3.0 wt%, 5.0 wt% and differential concentration of cross-linker. Then, parametric studies were performed by varying the parameters to investigate the morphology, the porosity, the swelling ratio and the thickness and genotoxicity of the scaffolds. The scaffolds thickness pattern was regular to concentration of the degree of cross-linker and collagen. It was observed that the swelling ratio, the degree of crosslink, and the pore size(thickness of scaffold) can be controlled by adjusting the collagen, crosslinker. Among the parameters investigated, the smallest thickness can be achieved by collagen, crosslinker concentrate condition. The collagen scaffold is induced no genotoxicity. The lowest swelling ratio, as an indication of the highest degree of crosslink, can be obtained by adding crosslink agent.

Preparation and Surface-Active Properties of Vinyl Acetate Cotelomers (I) (비닐아세테이트 코텔로머의 제조 및 계면활성(I))

  • Lee, Eon-Pil;Kang, Se-Mi;Hwang, Dae-Youn;Jung, Young-Jin;Choi, Hae-Wook;Choi, Young-Ho;Lee, Jae-Ho
    • Fashion & Textile Research Journal
    • /
    • v.14 no.4
    • /
    • pp.677-683
    • /
    • 2012
  • 1-octanethiol and vinyl acetate telomers ($R_8S$-nVAc) were synthesized and hydrolyzed with sodium hydroxide subsequently, 1.2-epoxyhexane was then introduced to the telomers. In addition, we prepared cotelomers of multi-alkylated nonionic surfactants with a molecular structure of xRnMA-yVA (x; hydrophobic group, y; hydrophilic group, MA; methacrylic ester, VA; vinyl alcohol, R; and alkyl group) and cross-linked with sodium tetraborate decahydrate. Their active surface properties were investigated by several techniques such as surface tension, foaming property, and emulsification power measurements. The surface tension of $R_8S$-8.8VA decreased without the introduction of 1.2-Epoxy hexane, and the degree of emulsification and foaming abilities of $R_8S$-8.8VA increased without the introduction of 1.2-Epoxy hexane. However, the differences were insignificant. The epoxy groups were attached to a $R_8S$-8.8VA cotelomer with a limited variation of the active surface properties. The surface tension of $1.1R_6MA$-8.8VA decreased after cross-linking subsequently, the degree of emulsification and foaming abilities of $1.1R_6MA$-8.8VA increased after cross-linking. However, there was no clear difference between them. The B-O bonds were attached to a $1.1R_6MA$-8.8VA cotelomer with a limited variation of the active surface properties.

Enhancing the Physical Properties and Lifespan of Bacterial Quorum Quenching Media through Combination of Ionic Cross-Linking and Dehydration

  • Lee, Sang Hyun;Lee, Seonki;Lee, Kibaek;Nahm, Chang Hyun;Jo, Sung-Jun;Lee, Jaewoo;Choo, Kwang-Ho;Lee, Jung-Kee;Lee, Chung-Hak;Park, Pyung-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.552-560
    • /
    • 2017
  • Quorum quenching (QQ) bacteria entrapped in a polymeric composite hydrogel (QQ medium) have been successfully applied in membrane bioreactors (MBRs) for effective biofouling control. However, in order to bring QQ technology closer to practice, the physical strength and lifetime of QQ media should be improved. In this study, enforcement of physical strength, as well as an extension of the lifetime of a previously reported QQ bacteria entrapping hollow cylinder (QQ-HC), was sought by adding a dehydration procedure following the cross-linking of the polymeric hydrogel by inorganic compounds like $Ca^{2+}$ and boric acid. Such prepared medium demonstrated enhanced physical strength possibly through an increased degree of physical cross-linking. As a result, a longer lifetime of QQ-HCs was confirmed, which led to improved biofouling mitigation performance of QQ-HC in an MBR. Furthermore, QQ-HCs stored under dehydrated condition showed higher QQ activity when the storage time lasted more than 90 days owing to enhanced cell viability. In addition, the dormant QQ activity after the dehydration step could be easily restored through reactivation with real wastewater, and the reduced weight of the dehydrated media is expected to make handling and transportation of QQ media highly convenient and economical in practice.

A Study on Adhesion Characteristics and Physical Properties of Animal Glue Added Genipin (제니핀을 첨가한 아교의 접착 특성과 물성 변화 연구)

  • Lee, Jun Ho;Yu, Ji A;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.34 no.3
    • /
    • pp.157-166
    • /
    • 2018
  • In this study, gelatin binding ability was increased by adding cross linking agent to improve adhesive characteristic of animal glue. Animal glue added genipin measured gel strength and viscosity, the structural analysis, the color retention degree, elution degree, and rupture strength. And the water resistance and ultraviolet light resistance with the addition of genipin were compared. As a result of the study, the gel strength and viscosity increased with the amount of genipin. As a result of the structural analysis, in gelatin, the absorption peak of the triple structure of collagen structurally stabilized was observed. As a result of the color retention degree, the film was observed because of the lowered brightness. The amount of elution glue was increased with addition of genipin at $50^{\circ}C$ distilled water condition and rupture strength has increased with the amount of genipin. In the water resistance and light fastness, there was no appearance before and after deterioration due to the addition of genipin. Based on the results of this study, it confirmed the adhesive characteristics of animal glue added genipin and examined the experimental method applicable for animal glue. After the addition of genipin, flexibility, re-solving, adhesive force, and curing speed, which are unique characteristics of glue, can be improved without disappearing, so it is expected that it will be applicable to production of animal glue and conservation of cultural heritage when homogeneous glue is secured.

Control of Mechanical Properties of Polyurethane Elastomers Synthesized with Aliphatic Diisocyanate Bearing a Symmetric Structure

  • Kojio, Ken;Nozaki, Shuhei;Takahara, Atsushi;Yamasaki, Satoshi
    • Elastomers and Composites
    • /
    • v.54 no.4
    • /
    • pp.271-278
    • /
    • 2019
  • Polyurethane elastomers (PUEs) were synthesized using trans-1,4-bis(isocyanatomethyl) cyclohexane (1,4-H6XDI), poly(oxytetramethylene) glycol, 1,4-butanediol (BD), and 1,1,1-trimethylol propane (TMP). To control the molecular aggregation state and mechanical properties of these PUEs, hard segment contents of 20 and 30 wt% and BD/TMP ratios of 10/0 and 8/2 were chosen. Differential scanning calorimetry and small-angle X-ray scattering measurements revealed that the degree of microphase separation increased with an increase in both hard segment content and BD ratio. The Young's modulus and strain at break of the 1,4-H6XDI-based PUE were 6-20 MPa and 5-15, respectively. Incorporation of 20% TMP as a cross-linking agent into BD increased the melting temperature of the hard segment chains, that is, heat resistance, and decreased the Young's modulus. This could be due to the low density of the physical cross-linking network and the dispersion of hard segment chains in the soft segment matrix in the PUE in the presence of 20% TMP.