• Title/Summary/Keyword: degradative pathway

Search Result 22, Processing Time 0.019 seconds

Isolation of Pseudomonas putida Z104 and Degra-dation Characteristics of Benzoate and Catechol (Benzoate와 Catechol을 분해하는 Pseudomonas putida Z104의 분리 및 분해특성)

  • 김기필;김준호;김민옥;박정아;정원화;김치경
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.3
    • /
    • pp.307-313
    • /
    • 2000
  • Aromatic hydrocarbons are known to be recalcitrant, so that they have been concerned as pollutant chemicals. Microorganisms play a major role in the breakdown and mineralization of these compounds. However, the kinetics of the biodegradation process may be much slower than desired from environmental consideration. The biodegradation of aromatic hydrocarbons is conducted by oxidation to produce catechol as a common intermediate which is metabolized for carbon and energy sources. In this study, a bacterial isolate capable of degrading several aromatic hydrocarbons was isolated from the contaminated wastewater of Yeocheon industrial complex. On the basis of biochemical characteristics and major cellular fatty acids, the isolate was identified as Pseudomonas putida Z104. The strain Z104 can utilize benzoate and catechol as the sole carbon and energy sources via a serial degradative pathway. The strain degraded actively 0.5 mM catechol in MM2 medium at pH 7.0 and 3$0^{\circ}C$.

  • PDF

Cloning of C-P Compound Biodegrading Genes in Pseudomonas sp. strain #A1 (Pseudomonas sp. strain #A1에서 C-P 화합물 분해 유전자의 Cloning)

  • Lee, Ki-Sung;Cho, Hong-Bum;Kim, Soo-Ki
    • The Journal of Natural Sciences
    • /
    • v.11 no.1
    • /
    • pp.65-73
    • /
    • 1999
  • C-P compounds(Pn; phosphonate) such as glyphosate(GPS), aminoethylphosphonate(AEPn) and methyl-phosphonate(MPn) biodegrading genes were cloned from Pseudomonas sp. strain #A1 Which assimilated GPS as sole phosphorous source. Carrying out the in vivo molecular cloning by means of Mini-Mu plasmid, the size of clones($AEPn^+$, $MPn^+$, $GPS^+$) for the gene to degrade C=P compounds are 10-19Kb, 10Kb, and 12-18 Kb, respectively. Moreover, they expressed the phenotype for each Pn when they were transformed into $\Delta phn$ mutants. Hence, it is postulated that Pseudomonas sp.#A1 has three kind of Pn degradative pathway, separately. The phn clones($AEPn^+$, $MPn^+$, $GPS^+$) are verified as the members of PHO regulon because of their phoBR-dependent characteristics.

  • PDF