• Title/Summary/Keyword: degradation pathway

Search Result 435, Processing Time 0.029 seconds

Simvastatin Induces Avian Muscle Protein Degradation through Muscle Atrophy Signaling (Simvastatin이 메추리 근육 세포에 미치는 영향)

  • JeongWoong, Park;Yu-Seung, Choi;Sarang, Choi;Sang In, Lee;Sangsu, Shin
    • Korean Journal of Poultry Science
    • /
    • v.49 no.4
    • /
    • pp.265-272
    • /
    • 2022
  • Many studies on poultry have been conducted in the poultry industry to improve their important economic traits, such as egg production, meat quality, and carcass yield. Environmental changes affect the poultry's economic traits, including muscle growth. The purpose of this study is to investigate the mechanisms by which simvastatin causes muscle injury in quail muscle cells. Following treatment with various doses of simvastatin, LD50 in the quail myoblast cells was determined using a cell viability test; cell death was caused by apoptosis and/or necrosis. Thereafter, the expression patterns of the atrophy marker genes were examined via quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The results showed that the transcriptional levels of the muscle atrophy marker genes (Atrogin-1, TRIM63) and the upstream genes in their signaling cascade were increased by simvastatin treatment. This indicated that simvastatin induced myogenic cell death and muscle injury via protein degradation through muscle atrophy signaling. Further studies should focus on identifying the mechanism by which simvastatin induces the protein degradation signaling pathway in quail muscle..

Effect of FK506 and Cyclosporin A on $I{\kappa}B{\alpha}$ Degradation and $IKK{\alpha}$ Pathway in Bronchial Epithelial Cells, Monocytes, Lymphocytes and Alveolar Macrophages (FK506과 cyclosporin A가 기관지상피세포, 단핵구, 림프구 및 폐포대식세포에서 $I{\kappa}B{\alpha}$ 분해 및 $IKK{\alpha}$ 활성에 미치는 효과)

  • Yoon, Ho Il;Lee, Chang-Hoon;Lee, Hee-Seok;Lee, Choon-Taek;Kim, Young Whan;Han, Sung Koo;Shim, Young-Soo;Yoo, Chul-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.54 no.4
    • /
    • pp.449-458
    • /
    • 2003
  • Background : Cyclosporin A(CsA) and tacrolimus(FK506) have been widely used as immunosuppressants. The effects of CsA, or FK506, on the $I{\kappa}B/NF-{\kappa}B$ pathway have been shown to vary according to the cell type. However, their effects on the $I{\kappa}B/NF-{\kappa}B$ pathway have not been reported in bronchial epithelial cells. In this study, the effects of CsA and FK506 on the $I{\kappa}B/NF-{\kappa}B$ pathway in bronchial epithelial cells, monocytes, lymphocytes and alveolar macrophages were evaluated. The relationship between their effects on the $I{\kappa}B/NF-{\kappa}B$ pathway and $I{\kappa}B$ kinase(IKK) activity was also investigated. Methods : BEAS-2B and A549 cells, pulmonary alveolar macrophages, peripheral blood monocytes and lymphocytes were used. The cells were pre-treated with CsA, or FK506, for various time periods, followed by stimulation with TNF-${\alpha}$, LPS or IL-$1{\beta}$. The $I{\kappa}B{\alpha}$ expressions were assayed by Western blot analyses. The IKK activity was evaluated by an in vitro immune complex kinase assay, using GST-$I{\kappa}B{\alpha}$ as the substrate. Results : Neither CsA nor FK506 affected the level of $I{\kappa}B{\alpha}$ expression in any of the cell types used in this study. CsA pre-treatment inhibited the TNF ${\alpha}$-induced $I{\kappa}B{\alpha}$ degradation in bronchial epithelial cells. In contrast, the TNF ${\alpha}$-induced $I{\kappa}B{\alpha}$ degradation was not affected by FK506 pre-treatment. However, FK506 suppressed the cytokine-induced $I{\kappa}B{\alpha}$ degradation in the pulmonary alveolar macrophages, peripheral blood monocytes and lymphocytes. The inhibitory effect of CsA, or FK506, on $I{\kappa}B{\alpha}$ degradation was not related to IKK. Conclusions : CsA and FK506 suppressed the $I{\kappa}B{\alpha}$ degradation in bronchial epithelial cells, monocytes, lymphocytes and alveolar macrophages, so this may not be mediated through IKK.

Role of PI3K/Akt Pathway in the Activation of IκB/NF-κB Pathway in Lung Epithelial Cells (폐 상피세포에서 PI3K/Akt 경로가 IκB/NF-κB 경로의 활성화에 미치는 영향)

  • Lee, Sang-Min;Kim, Yoon Kyung;Hwang, Yoon-Ha;Lee, Chang-Hoon;Lee, Hee-Seok;Lee, Choon-Taek;Kim, Young Whan;Han, Sung Koo;Shim, Young-Soo;Yoo, Chul-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.54 no.5
    • /
    • pp.551-562
    • /
    • 2003
  • Background : NF-${\kappa}B$ is a characteristic transcriptional factor which has been shown to regulate production of acute inflammatory mediators and to be involved in the pathogenesis of many inflammatory lung diseases. There has been some evidence that PI3K/Akt pathway could activate NF-${\kappa}B$ in human cell lines. However, the effect of PI3K/Akt pathway on the activation of NF-${\kappa}B$ varied depending on the cell lines used in the experiments. In this study we evaluated the effect of PI3K/Akt pathway on the activation of NF-${\kappa}B$ in human respiratory epithelial cell lines. Methods : BEAS-2B, A549 and NCI-H157 cell lines were used in this experiment. To evaluate the activation of Akt activation and I${\kappa}B$ degradation, cells were analysed by western blot assay using phospho-specific Akt Ab and $I{\kappa}B$ Ab. To block PI3K/Akt pathway, cells were pretreated with wortmannin or LY294002 and transfected with dominant negative Akt (DN-Akt). For IKK activity, immune complex kinase assay was performed. To evaluate the DNA binding affinity and transcriptional activity of NF-${\kappa}B$, electrophoretic mobility shift assay (EMSA) and luciferase assay were performed, respectively. Results : In BEAS-2B, A549 and NCI-H157 cell lines, Akt was activated by TNF-$\alpha$ and insulin. Activation of Akt by insulin did not induce $I{\kappa}B{\alpha}$ degradation. Blocking of PI3K/Akt pathway via wortmannin/LY294002 or DN-Akt did not inhibit TNF-$\alpha$-induced $I{\kappa}B{\alpha}$ degradation or IKK activation. Inhibition of PI3K/Akt did not affect TNF-$\alpha$-induced NF-${\kappa}B$ activation. Overexpression of DN-Akt did not block TNF-$\alpha$-induced transcriptional activation of NF-${\kappa}B$, but wortmannin enhanced TNF-$\alpha$-induced in NF-${\kappa}B$ transcriptional activity. Conclusion : PI3K/Akt was not involved in TNF-$\alpha$-induced $I{\kappa}B{\alpha}$ degradation or transcriptional activity of NF-${\kappa}B$ in human respiratory epithelial cell lines.

Characteristics of Polycyclic Aromatic Hydrocarbons Degradation by Stenotrophomonas maltophilia (Stenotrophomonas maltophilia에 의한 방향족 화합물의 분해특성)

  • Choi, Chang-Seok;Lee, Tae-Jin;Park, Jin-Hee;Kim, Young-Sik;Kim, Jin-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.4
    • /
    • pp.130-137
    • /
    • 2003
  • In this study, Isolation was attempted to acquire a phenol utilizing bacterium for PAH degradation and to investigate the characteristics of PAH degradation. The isolate was identified by BIOLOG test as Stenotrophomonas maltophilia. Lower first order reaction constant was detected in the presence of lower phenol concentration. The yield coefficient of phenol was 0.1447mg cell/mg phenol. In the presence of naphthalene and phenol, phenol degradation was favorable. The isolate was capable of utilize naphthalene and phenanthrene as growth substrate but PAH, containing over 4-ring structure such as pyrene, was not degradable. The possible phenanthrene degradation pathway would be the addition of two hydroxy group on C-1 and C-2 position, followed by ortho cleavage, and then decarboxylation.

  • PDF

Induction of PCB degradative pathway by plant terpenoids as growth substrates or inducers

  • Jeong, Gyeong-Ja;Kim, Eung-Bin;So, Jae-Seong;Go, Seong-Cheol
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.489-492
    • /
    • 2000
  • The eventual goal of this study is to elucidate roles of plant terpenoids (e.g., cymene, limonene and others) as natural substrates in the cometabolic biodegradation of PCBs and to develop an effective PCB bioremediation technology. The aim of this study was to examine how plant terpenoids, as natural substrates or inducers would affect the biodegradation of PCB congeners. Various PCB degraders that could grow on biphenyl and several terpenoids were tested for their PCB degradation capabilities. The PCB congener degradation activities were first monitored through resting cell assay technique that could detect degradation products of the substrate. The congener removal was also confirmed by concommitant GC analysis. The PCB degraders, Pseudononas sp. P166 and Caynebacterium sp. T104 were found to grow on both biphenyl and terpenoids ((S)-(-) limonene, p-cymene and ${\alpha}-terpinene$) whereas Arthrobacter B1B could not grow on the terpenoids as a sole carbon source. The strain B1B grown on biphenyl showed a good degradation activity for 4,4'-dichlorobiphenyl (DCBp) while strains P166 and T104 gave about 25% of B1B activity. Induction of degradation by cymene, limonene and terpine was hardly detected by the resting cell assay technique. This appeared to be due to relatively lower induction effect of these terpenoids compared with biphenyl. However, a subsequent GC analysis showed that the congener could be removed up to 30% by the resting cells of T104 grown on the terpenoids. This indicates that terpenoids, widely distributed in nature, could be utilized as both growth and/or inducer substrate for PCB biodegradation.

  • PDF

Wnt/$\beta$-catenin/Tcf Signaling Induces the Transcription of a Tumor Suppressor Axin2, a Negative Regulator of the Signaling Pathway

  • Jho, Eek-hoon;Tong Zhang;Claire Domon;Joo, Choun-Ki;Freund, Jean-Noel;Frank Costantini
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.108-108
    • /
    • 2001
  • Axin2/Conductin/Axil and its ortholog Axin are negative regulators of the Wnt signaling pathway, which promote the phosphorylation and degradation of ${\beta}$-catenin. While Axin is expressed ubiquitously, Axin2 mRNA was seen in a restricted pattern during mouse embryogenesis and organogenesis. Because many sites of Axin2 expression overlapped with those of several Wnt genes, we tested whether Axin2 was induced by Wnt signaling. Endogenous Axin2 mRNA and protein expression could be rapidly induced by activation of the Wnt pathway, and Axin2 reporter constructs, containing a 5.6 kb DNA fragment including the promoter and first intron, were also induced. This genomic region contains eight Tcf/LEF consensus binding sites, five of which are located within longer, highly conserved non-coding sequences. The mutation or deletion of these Tcf/LEF sites greatly diminished induction by ${\beta}$-catenin, and mutation of the Tcf/LEF site T2 abolished protein binding in an electrophoretic mobility-shift assay. These results strongly suggest that Axin2 is a direct target of the Wnt pathway, mediated through Tcf/LEF factors. The 5.6 kb genomic sequence was sufficient to direct the tissue specific expression of d2EGFP in transgenic embryos, consistent with a role for the Tcf/LEF sites and surrounding conserved sequences in the in vivo expression pattern of Axin2. Our results suggest that Axin2 participates in a negative feedback loop, which could serve to limit the duration or intensity of a Wnt-initiated signal.

  • PDF

The Investigation of Biodegradation Characteristics of Xylene by Soil Inhabited Microorganisms (토양 서식 미생물을 이용한 자일렌(xylene) 분해특성 조사)

  • Choi, Phil-Kweon;Heo, Pyeung;Lee, Sang-Seob
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.6
    • /
    • pp.389-393
    • /
    • 2013
  • The purpose of this study is to investigate the biodegradation characteristics of the xylene by BTEX-degrading bacteria, Pseudomonas putida BJ10, isolated from oil-contaminated soil and bio-degradation pathway of the xylene. The removal efficiencies of o, m, p-xylene in mineral salts medium (MSM) by P. putida BJ10 were 94, 90 and 98%, respectively for 24 hours. It shows clear difference compared with the control groups which were below 3%. The removal efficiencies of BTEX by P. putida BJ10 in gasoline-contaminated soil were 66% for 9 days. They were clearly distinguished from the control groups (control and sterilized soil) which were 32 and 8%. 3-methylcatechol and o-toluic acid were detected after 6 and 24 hours during the o-xylene biodegradation pathway. Therefore, we confirmed o-toluic acid as the final metabolite. And intermediate-products were somewhat different with previously published studies of the transformation pathway from o-xylene to 3-methylcatechol.

The ybcF Gene of Escherichia coli Encodes a Local Orphan Enzyme, Catabolic Carbamate Kinase

  • Nam Yeun Kim;Ok Bin Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1527-1536
    • /
    • 2022
  • Escherichia coli can use allantoin as its sole nitrogen source under anaerobic conditions. The ureidoglycolate produced by double release of ammonia from allantoin can flow into either the glyoxylate shunt or further catabolic transcarbamoylation. Although the former pathway is well studied, the genes of the latter (catabolic) pathway are not known. In the catabolic pathway, ureidoglycolate is finally converted to carbamoyl phosphate (CP) and oxamate, and then CP is dephosphorylated to carbamate by a catabolic carbamate kinase (CK), whereby ATP is formed. We identified the ybcF gene in a gene cluster containing fdrA-ylbE-ylbF-ybcF that is located downstream of the allDCE-operon. Reverse transcription PCR of total mRNA confirmed that the genes fdrA, ylbE, ylbF, and ybcF are co-transcribed. Deletion of ybcF caused only a slight increase in metabolic flow into the glyoxylate pathway, probably because CP was used to de novo synthesize pyrimidine and arginine. The activity of the catabolic CK was analyzed using purified YbcF protein. The Vmax is 1.82 U/mg YbcF for CP and 1.94 U/mg YbcF for ADP, and the KM value is 0.47 mM for CP and 0.43 mM for ADP. With these results, it was experimentally revealed that the ybcF gene of E. coli encodes catabolic CK, which completes anaerobic allantoin degradation through substrate-level phosphorylation. Therefore, we suggest renaming the ybcF gene as allK.

Activation of Lysosomal Function Ameliorates Amyloid-β-Induced Tight Junction Disruption in the Retinal Pigment Epithelium

  • Dong Hyun Jo;Su Hyun Lee;Minsol Jeon;Chang Sik Cho;Da-Eun Kim;Hyunkyung Kim;Jeong Hun Kim
    • Molecules and Cells
    • /
    • v.46 no.11
    • /
    • pp.675-687
    • /
    • 2023
  • Accumulation of pathogenic amyloid-β disrupts the tight junction of retinal pigment epithelium (RPE), one of its senescence-like structural alterations. In the clearance of amyloid-β, the autophagy-lysosome pathway plays the crucial role. In this context, mammalian target of rapamycin (mTOR) inhibits the process of autophagy and lysosomal degradation, acting as a potential therapeutic target for age-associated disorders. However, efficacy of targeting mTOR to treat age-related macular degeneration remains largely elusive. Here, we validated the therapeutic efficacy of the mTOR inhibitors, Torin and PP242, in clearing amyloid-β by inducing the autophagy-lysosome pathway in a mouse model with pathogenic amyloid-β with tight junction disruption of RPE, which is evident in dry age-related macular degeneration. High concentration of amyloid-β oligomers induced autophagy-lysosome pathway impairment accompanied by the accumulation of p62 and decreased lysosomal activity in RPE cells. However, Torin and PP242 treatment restored the lysosomal activity via activation of LAMP2 and facilitated the clearance of amyloid-β in vitro and in vivo. Furthermore, clearance of amyloid-β by Torin and PP242 ameliorated the tight junction disruption of RPE in vivo. Overall, our findings suggest mTOR inhibition as a new therapeutic strategy for the restoration of tight junctions in age-related macular degeneration.

Versatile Catabolic Properties of Tn4371-encoded bph Pathway in Comamonas testosteroni (Formerly Pseudomonas sp.) NCIMB 10643

  • Kim, Jong-Soo;Kim, Ji-Hyun;Ryu, Eun-Kyeong;Kim, Jin-Kyoo;Kim, Chi-Kyung;Hwang, In-Gyu;Lee, Kyoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.302-311
    • /
    • 2004
  • Comamonas testosteroni (formerly Pseudomonas sp.) NCIMB 10643 can grow on biphenyl and alkylbenzenes $(C_2-C_7)$ via 3-substituted catechols. Thus, to identify the genes encoding the degradation, transposon-mutagenesis was carried out using pAG408, a promoter-probe mini-transposon with a green fluorescent protein (GFP), as a reporter. A mutant, NT-1, which was unable to grow on alkylbenzenes and biphenyl, accumulated catechols and exhibited an enhanced expression of GFP upon exposure to these substrates, indicating that the gfp had been inserted in a gene encoding a broad substrate range catechol 2,3-dioxygenase. The genes (2,826 bp) flanking the gfp cloned from an SphI-digested fragment contained three complete open reading frames that were designated bphCDorfl. The deduced amino acid sequences of bphCDorfl were identical to 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC), 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase (BphD), and OrfI, respectively, that are all involved in the degradation of biphenyl/4-chlorobiphenyl (bph) by Ralstonia oxalatica A5. The deduced amino acid sequence of the orfl revealed a similarity to those of outer membrane proteins belonging to the OmpW family. The introduction of the bphCDorfl genes enabled the NT-l mutant to grow on aromatic hydrocarbons. In addition, PCR analysis indicated that the DNA sequence and gene organization of the bph operon were closely related to those in the bph operon from Tn4371 identified in strain A5. Furthermore, strain A5 was also able to grow on a similar set of alkylbenzenes as strain NCIMB 10643, demonstrating that, among the identified aromatic hydrocarbon degradation pathways, the bph degradation pathway related to Tn4371 was the most versatile in catabolizing a variety of aromatic hydrocarbons of mono- and bicyclic benzenes.