• Title/Summary/Keyword: degradation artificial aging treatment

Search Result 10, Processing Time 0.03 seconds

Changes of Carbide Characteristics and Magnetic Properties in Artificially Aging Heat Treated 2.25CrMo Steel (경년열화 열처리된 2.25CrMo 강에서의 탄화물 특성 및 자기적 성질의 변화)

  • Byeon, Jal Won;Kwun, S.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.6
    • /
    • pp.323-329
    • /
    • 2001
  • Artificial aging was performed to simulate the microstructural degradation in 2.25CrMo steel arising from long time exposure at $540^{\circ}C$. The carbide morphologies were classified as acicular, pipe and globular type, and the number of carbides per unit area was measured for each type of carbides. The fine acicular carbides were found to diminish drastically in the initial stage of aging. An attempt was made to evaluate the microstructural degradation in artificially aging heat treated 2.25CrMo steel by the magnetic property measurements such as saturation magnetization, coercivity and remanence. The saturation magnetization showed no distinct trend with aging time. However, the coercivity and remanence were observed to decrease rapidly in initial 920 hours of aging time and then decrease slowly afterwards.

  • PDF

Ultrasonic Nondestructive Evaluation of Microstructural Degradation in Artificially Aging Heat Treated 2.25CrMo Steel (인공 열화 열처리된 2.25CrMo 강의 미세조직 변화에 대한 초음파 비파괴평가)

  • Byeon, Jai Won;Kwun, S.I.;Park, Un-Su;Park, Ik-Keun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.2
    • /
    • pp.110-117
    • /
    • 2001
  • Artificial aging was performed to simulate the microstructural degradation in 2.25CrMo steel arising from long time exposure at $540^{\circ}C$. It was found that the carbides became coarser and spheroidized as aging time increased. An attempt was made to evaluate the microstructural degradation in artificially aging heat treated 2.25CrMo steel by the ultrasonic attenuation and velocity measurements. Ultrasonic velocity was found essentially insensitive to the microstructural changes resulting from aging heat treatment. However, the ultrasonic attenuation was observed to increase with increasing aging time. Also, it was noticed that the change of ultrasonic attenuation with aging time was more sensitive at high frequency regions.

  • PDF

The Study of Restoration Technique of Wax-treated Volume for the Annals of the Joseon Dynasty(I) - Evaluation of degradation behavior of reproduced waxy paper - (조선왕조실록 밀랍본 복원기술연구(제1보) - 재현밀랍지의 열화거동평가 -)

  • Jeong, Seon-Hwa;Jeong, So-Young;Seo, Jin-Ho;Lee, Hye-Yun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.1 s.119
    • /
    • pp.56-63
    • /
    • 2007
  • The purpose of this research was to identify causes of damage of wax-treated volume of "The Annals of the Joseon Dynasty". As one of the efficient restoration methods, analyses of damaged state of reproduced wax-treated paper through tests of degradation of wax-treated paper under an artificial setting were performed, and in particular, differences between lightness and acidity were observed. On the whole, it was confirmed that yellow wax-treated papers were more stable than white wax-treated papers against artificial aging treatment, which is thought to be because the white wax-treated paper was more affected by a variety of substances interacting with paper than yellow wax-treated paper under artificially aged conditions, which were added in the course of refinement and processing operation such as decolorization and deodorization.

Evaluation of degradation in aged 2.25CrMo steel by electrical resistivity, magnetic Barkhausen noise and carbide analysis (전기비저항, 바크하우젠노이즈 및 탄화물 분석법을 이용한 2.25Cr-1Mo 강의 열화도 평가)

  • Byeon, Jai-Won;Pyo, S.W.;Kwun, S.I.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.210-215
    • /
    • 2001
  • The ferritic 2.25CrMo steel has been used for high temperature structure applications such as turbine rotors, boilers and pressure vessels in fossil plant and petroleum chemical facilities. However, this steel is known to result in aging degradation due to temper embrittlement, carbide induced brittleness and softening of matrix after long time exposure to high temperature. This research investigated the microstructural and mechanical changes after artificial degradation treatment and evaluated the degree of degradation by several nondestructive methods. The decrease of electrical resistivity and increase of magnetic Barkhausen noise(RMS voltage) with increasing aging time were observed. The change of electrical resistivity and Barkhausen noise showed a good correlation with the ductile-brittle transition temperature.

  • PDF

Material Degradation in KS D 3503 SS400 Rolled Steel at $179^{\circ}C$ (KS D 3503 SS400 압연강 $179^{\circ}C$에서의 재질열화 연구)

  • Baek, Un-Bong;Park, Jong-Seo;Nahm, Seung-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.13-18
    • /
    • 2006
  • In spite of frequent defect in industrial boilers, life assessment or diagnostic method for them has not been actively studied. In this research, SS400 carbon steel used in industrial boilers is simulated with artificial aging heat treatment. To do qualitative life assessment, differences in micro-structures and hardness of SS400 by the degradation time are studied. In addition, variation in material properties by aging was observed with the tensile test at room temperature and $179^{\circ}C$ and changes in ductile to brittle transition temperature was observed with the charpy impact test performed at several test temperature.

Nondestructive Evaluation for Long-term Heat Treatment Effects on Microstructure of Co-base Superalloy by Scanning Acoustic Microscope (주사음향현미경을 이용한 코발트기 초내열합금 미세조직에 관한 장시간 열영향에 대한 비파괴평가)

  • lEE, JoonHee;Kim, ChungSeok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.3
    • /
    • pp.118-123
    • /
    • 2019
  • The aim of this study investigates the feasibility of scanning acoustic microscope (SAM) with high frequency transducer for material degradation. The test specimen was prepared by artificial heat treatment of Co-base superalloy. The high frequency 200 MHz acoustic lens was used to generate the leaky surface acoustic wave (LSAW) on the test specimens. The matrix precipitates coarsened with thermal aging time, and then grow up to several tens of micrometers. The velocity of LSAW decreased with increasing aging time. Also, it has a good correlation between LSAW and hardness. Consequently, V(z) curve methods of SAM using high frequency transducer is useful tool to evaluate the heat treatment effects on microstructure.

Depletion of Solid Solution Elements and Change of Carbides in Artificially Aging Heat Treated 2.25CrMo Steel (인공 경년열화 열처리된 2.25CrMo 강에서의 고용원소 고갈 및 탄화물 변화)

  • Byeon, Jal Won;Pyo, S.W.;Kwun, S.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.2
    • /
    • pp.70-75
    • /
    • 2002
  • The depletion of solid solution elements from matrix and the change of carbides during artificial aging of 2.25CrMo steel at $630^{\circ}C$ were investigated. The Mo and Cr elements were found to be depleted drastically in the early stage of aging. The change of carbides was confirmed by analyzing the XRD patterns of electrolytically extracted carbides. Four type of carbides, $M_{23}C_6$, $M_3C$, $M_2C$ and $M_6C$, were found to exist in the specimen before aging. The amount of $M_6C$ carbides increased with aging time, while that of $M_3C$ carbides diminished after short aging time.

A Study on Advanced Small Punch Test for Evaluation of Material Degradation in Weldment Microstructures (용접부 미세조직의 재질열화 평가를 위한 Advanced Small Punch 시험에 관한 연구)

  • 이동환;이송인;박종진;유효선
    • Journal of Welding and Joining
    • /
    • v.21 no.1
    • /
    • pp.99-106
    • /
    • 2003
  • This research was aimed to evaluate the material degradation with various microstructures of X20CrMoV121 steel weldment by Advanced Small Punch(ASP) test. Due to the regional limitation on constitutive structures, the minimized loading ball(${\varphi}1.5mm$) and bore diameter of lower die(${\varphi}3mm$) were designed for the ASP test. The micro-hardness test was also performed to assess the mechanical properties with artificial aging heat treatment. Material degradation was estimated by ductile-brittle transition temperature(DBTT). The results obtained from the ASP test were compared with those from conventional small punch(CSP) test and CVN impact test for several weldment microstructures. It was found that the ASP test clearly showed the microstructural dependance on the material degradation in the weldment.

Influence of the preparation design and artificial aging on the fracture resistance of monolithic zirconia crowns

  • Mitov, Gergo;Anastassova-Yoshida, Yana;Nothdurft, Frank Phillip;See, Constantin von;Pospiech, Peter
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.1
    • /
    • pp.30-36
    • /
    • 2016
  • PURPOSE. The aim of this study was to evaluate the fracture resistance and fracture behavior of monolithic zirconia crowns in accordance with the preparation design and aging simulation method. MATERIALS AND METHODS. An upper first molar was prepared sequentially with three different preparation designs: shoulderless preparation, 0.4 mm chamfer and 0.8 mm chamfer preparation. For each preparation design, 30 monolithic zirconia crowns were fabricated. After cementation on Cr-Co alloy dies, the following artificial aging procedures were performed: (1) thermal cycling and mechanical loading (TCML): 5000 cycles of thermal cycling $5^{\circ}C-55^{\circ}C$ and chewing simulation (1,200,000 cycles, 50 N); (2) Low Temperature Degradation simulation (LTD): autoclave treatment at $137^{\circ}C$, 2 bar for 3 hours and chewing simulation; and (3) no pre-treatment (control group). After artificial aging, the crowns were loaded until fracture. RESULTS. The mean values of fracture resistance varied between 3414 N (LTD; 0.8 mm chamfer preparation) and 5712 N (control group; shoulderless preparation). Two-way ANOVA analysis showed a significantly higher fracture loads for the shoulderless preparation, whereas no difference was found between the chamfer preparations. In contrast to TCML, after LTD simulation the fracture strength of monolithic zirconia crowns decreased significantly. CONCLUSION. The monolithic crowns tested in this study showed generally high fracture load values. Preparation design and LTD simulation had a significant influence on the fracture strength of monolithic zirconia crowns.

Evaluation of Ultrasonic Nonlinear Characteristics in Artificially Aged Al6061-T6 (인공시효된 Al6061-T6의 초음파 비선형 특성 평가)

  • Kim, Jongbeom;Lee, KyoungJun;Jhang, Kyung-Young;Kim, ChungSeok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.220-225
    • /
    • 2014
  • Generally, the nonlinearity of ultrasonic waves is measured using a nonlinear parameter ${\beta}$, which is defined as the ratio of the second harmonic's magnitude to the power of the fundamental frequency component after the ultrasonic wave propagates through a material. Nonlinear parameter ${\beta}$ is recognized as an effective parameter for evaluating material degradation. In this paper, we evaluated the nonlinear parameter of Al6061-T6 which had been subjected to an artificial aging heat treatment. The measurement was using the transmitted signal obtained from contact-type transducers. After the ultrasonic test, a micro Vickers hardness test was conducted. From the result of the ultrasonic nonlinear parameter, the microstructural changes resulting from the heat treatment were estimated and the hardness test proved that these estimates were reasonable. Experimental results showed a correlation between the ultrasonic nonlinear parameter and microstructural changes produced by precipitation behavior in the material. These results suggest that the evaluation of mechanical properties using ultrasonic nonlinear parameter ${\beta}$ can be used to monitor variations in the mechanical hardness of aluminum alloys in response to an artificial aging heat-treatment.