• 제목/요약/키워드: deformation parameter

검색결과 718건 처리시간 0.023초

Performance control analysis of concrete-filled steel tube sepa-rated spherical joint wind power tower

  • Yang Wen;Guangmao Xu;Xiazhi Wu;Zhaojian Li
    • Structural Engineering and Mechanics
    • /
    • 제87권2호
    • /
    • pp.137-149
    • /
    • 2023
  • In this study, to explore the working performance of the CFST split spherical node wind power tower, two groups of CFST split spherical joint plane towers with different web wall thicknesses and a set of space systems were analyzed. The tower was subjected to a low-cycle repeated load test, and the hysteresis and skeleton curves were analyzed. ABAQUS finite element simulation was used for verification and comparison, and on this basis parameter expansion analysis was carried out. The results show that the failure mode of the wind power tower was divided into weld tear damage between belly bar, high strength bolt thread damage and belly rod flexion damage. In addition, increasing the wall thickness of the web member could render the hysteresis curve fuller. Finally, the bearing capacity of the separated spherical node wind power tower was high, but its plastic deformation ability was poor. The ultimate bearing capacity and ductility coefficient of the simulated specimens are positively correlated with web diameter ratio and web column stiffness ratio. When the diameter ratio of the web member was greater than 0.13, or the stiffness ratio γ of the web member to the column was greater than 0.022, the increase of the ultimate bearing capacity and ductility coefficient decreased significantly. In order to maximize the overall mechanical performance of the tower and improve its economy, it was suggested that the diameter ratio of the ventral rod be 0.11-0.13, while the stiffness ratio γ should be 0.02-0.022.

The influence of Winkler-Pasternak elastic foundations on the natural frequencies of imperfect functionally graded sandwich beams

  • Avcar, Mehmet;Hadji, Lazreg;Akan, Recep
    • Geomechanics and Engineering
    • /
    • 제31권1호
    • /
    • pp.99-112
    • /
    • 2022
  • The present study examines the natural frequencies (NFs) of perfect/imperfect functionally graded sandwich beams (P/IP-FGSBs), which are composed of a porous core constructed of functionally graded materials (FGMs) and a homogenous isotropic metal and ceramic face sheets resting on elastic foundations. To accomplish this, the material properties of the FGSBs are assumed to vary continuously along the thickness direction as a function of the volume fraction of constituents expressed by the modified rule of the mixture, which includes porosity volume fraction represented using four distinct types of porosity distribution models. Additionally, to characterize the reaction of the two-parameter elastic foundation to the Perfect/Imperfect (P/IP) FGSBs, the medium is assumed to be linear, homogeneous, and isotropic, and it is described using the Winkler-Pasternak model. Furthermore, the kinematic relationship of the P/IP-FGSBs resting on the Winkler-Pasternak elastic foundations (WPEFs) is described using trigonometric shear deformation theory (TrSDT), and the equations of motion are constructed using Hamilton's principle. A closed-form solution is developed for the free vibration analysis of P/IP-FGSBs resting on the WPEFs under four distinct boundary conditions (BCs). To validate the new formulation, extensive comparisons with existing data are made. A detailed investigation is carried out for the effects of the foundation coefficients, mode numbers (MNs), porosity volume fraction, power-law index, span to depth ratio, porosity distribution patterns (PDPs), skin core skin thickness ratios (SCSTR), and BCs on the values of the NFs of the P/IP-FGSBs.

Seismic control of high-speed railway bridge using S-shaped steel damping friction bearing

  • Guo, Wei;Wang, Yang;Zhai, Zhipeng;Du, Qiaodan
    • Smart Structures and Systems
    • /
    • 제30권5호
    • /
    • pp.479-500
    • /
    • 2022
  • In this study, a new type of isolation bearing is proposed by combining S-shaped steel plate dampers (SSDs) with a spherical steel bearing, and the seismic control effect of a five-span standard high-speed railway bridge is investigated. The advantages of the proposed S-shaped steel damping friction bearing (SSDFB) are that it cannot only lengthen the structural periods, dissipate the seismic energy, but also prevent bridge unseating due to the restraint effectiveness of SSDs in the large relative displacements between the girders and piers. This study first presents a detailed description and working principle of the SSDFB. Then, mechanical modeling of the SSDFB was derived to fundamentally define its cyclic behavior and obtain key mechanical parameters. The numerical model of the SSDFB's critical component SSD was verified by comparing it with the experimental results. After that, parameter studies of the dimensions and number of SSDs, the friction coefficient, and the gap length of the SSDFBs were conducted. Finally, the longitudinal seismic responses of the bridge with SSDFBs were compared with the bridge with spherical bearing and spherical bearing with strengthened shear keys. The results showed that the SSDFB can not only significantly mitigate the shear force responses and residual displacement in bridge substructures but also can effectively reduce girder displacement and prevent bridge unseating, at a cost of inelastic deformation of the SSDs, which is easy to replace. In conclusion, the SSDFB is expected to be a cost-effective option with both multi-stage energy dissipation and restraint capacity, making it particularly suitable for seismic isolation application to high-speed railway bridges.

Elastic local buckling behaviour of corroded cold-formed steel columns

  • Nie Biao;Xu Shanhua;Hu WeiCheng;Chen HuaPeng;Li AnBang;Zhang ZongXing
    • Steel and Composite Structures
    • /
    • 제48권1호
    • /
    • pp.27-41
    • /
    • 2023
  • Under the long-term effect of corrosive environment, many cold-formed steel (CFS) structures have serious corrosion problems. Corrosion leads to the change of surface morphology and the loss of section thickness, which results in the change of instability mode and failure mechanism of CFS structure. This paper mainly investigates the elastic local buckling behavior of corroded CFS columns. The surface morphology scanning test was carried out for eight CFS columns accelerated corrosion by the outdoor periodic spray test. The thin shell finite element (FE) eigen-buckling analysis was also carried out to reveal the influence of corrosion surface characteristics, corrosion depth, corrosion location and corrosion area on the elastic local buckling behaviour of the plates with four simply supported edges. The accuracy of the proposed formulas for calculating the elastic local buckling stress of the corroded plates and columns was assessed through extensive parameter studies. The results indicated that for the plates considering corrosion surface characteristics, the maximum deformation area of local buckling was located at the plates with the minimum average section area. For the plates with localized corrosion, the main buckling shape of the plates changed from one half-wave to two half-wave with the increase in corrosion area length. The elastic local buckling stress decreased gradually with the increase in corrosion area width and length. In addition, the elastic local buckling stress decreased slowly when corrosion area thickness was relatively large, and then tends to accelerate with the reduction in corrosion area thickness. The distance from the corrosion area to the transverse and longitudinal centerline of the plate had little effect on the elastic local buckling stress. Finally, the calculation formula of the elastic local buckling stress of the corroded plates and CFS columns was proposed.

Using DQ method for vibration analysis of a laminated trapezoidal structure with functionally graded faces and damaged core

  • Vanessa Valverde;Patrik Viktor;Sherzod Abdullaev;Nasrin Bohlooli
    • Steel and Composite Structures
    • /
    • 제51권1호
    • /
    • pp.73-91
    • /
    • 2024
  • This paper has focused on presenting vibration analysis of trapezoidal sandwich plates with a damaged core and FG wavy CNT-reinforced face sheets. A damage model is introduced to provide an analytical description of an irreversible rheological process that causes the decay of the mechanical properties, in terms of engineering constants. An isotropic damage is considered for the core of the sandwich structure. The classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. The First-order shear deformation theory of plate is utilized to establish governing partial differential equations and boundary conditions for the trapezoidal plate. The governing equations together with related boundary conditions are discretized using a mapping-generalized differential quadrature (GDQ) method in spatial domain. Then natural frequencies of the trapezoidal sandwich plates are obtained using GDQ method. Validity of the current study is evaluated by comparing its numerical results with those available in the literature. After demonstrating the convergence and accuracy of the method, different parametric studies for laminated trapezoidal structure including carbon nanotubes waviness (0≤w≤1), CNT aspect ratio (0≤AR≤4000), face sheet to core thickness ratio (0.1 ≤ ${\frac{h_f}{h_c}}$ ≤ 0.5), trapezoidal side angles (30° ≤ α, β ≤ 90°) and damaged parameter (0 ≤ D < 1) are carried out. It is explicated that the damaged core and weight fraction, carbon nanotubes (CNTs) waviness and CNT aspect ratio can significantly affect the vibrational behavior of the sandwich structure. Results show that by increasing the values of waviness index (w), normalized natural frequency of the structure decreases, and the straight CNT (w=0) gives the highest frequency. For an overall comprehension on vibration of laminated trapezoidal plates, some selected vibration mode shapes were graphically represented in this study.

Impact performance study of filled thin-walled tubes with PM-35 steel core

  • Kunlong Tian;Chao Zhao;Yi Zhou;Xingu Zhong;Xiong Peng;Qunyu Yang
    • Structural Engineering and Mechanics
    • /
    • 제91권1호
    • /
    • pp.75-86
    • /
    • 2024
  • In this paper, the porous metal PM-35 is proposed as the filler material of filled thin-walled tubes (FTTs), and a series of experimental study is conducted to investigate the dynamic behavior and energy absorption performance of PM-35 filled thin-walled tubes under impact loading. Firstly, cylinder solid specimens of PM-35 steel are tested to investigate the impact mechanical behavior by using the Split Hopkinson pressure bar set (SHP); Secondly, the filled thin-walled tube specimens with different geometric parameters are designed and tested to investigate the feasibility of PM-35 steel applied in FTTs by the orthogonal test. According to the results of this research, it is concluded that PM-35 steel is with the excellent characteristics of high energy absorption capacity and low yield strength, which make it a potential filler material for FTTs. The micron-sizes pore structure of PM-35 is the main reason for the macroscopic mechanical behavior of PM-35 steel under impact loading, which makes the material to exhibit greater deformation when subjected to external forces and obviously improve the toughness of the material. In addition, PM-35 steel core-filled thin-wall tube has excellent energy absorption ability under high-speed impact, which shows great application potential in the anti-collision structure facilities of high-speed railway and maglev train. The parameter V0 is most sensitive to the energy absorption of FTT specimens under impact loading, and the sensitivity order of different variations to the energy absorption is loading speed V0>D/t>D/L. The loading efficiency of the FTT is affected by its different geometry, which is mainly determined by the sleeve material and the filling material, which are not sensitive to changes in loading speed V0, D/t and D/L parameters.

무한사면의 안정성에 미치는 억지말뚝의 영향에 대한 이론적 연구 (A Study on Effect of Stabilizing Pile on Stability of Infinite Slope)

  • 이승현;이수형
    • 한국산학기술학회논문지
    • /
    • 제17권12호
    • /
    • pp.496-503
    • /
    • 2016
  • 억지말뚝으로 보강된 무한사면의 해석을 위해 억지말뚝에 작용하는 하중을 소성변형이론과 소성흐름이론을 적용하여 산정하였고 무한사면의 안전율에 영향을 미치는 다양한 인자들의 효과를 살펴보았다. 해석결과에 따르면 억지말뚝의 설치로 인해 사면의 안전율이 상당히 증가함을 알 수 있었고 말뚝설치간격이 커질수록 안전율은 감소하였다. 억지말뚝의 설치로 인한 안전율의 증가가 커서 무한사면의 침투발생 유무가 사면의 안전율에 미치는 영향은 상대적으로 미미할 것으로 생각된다. 억지말뚝으로 보강된 무한사면의 안전율을 수식으로 나타내 보았는데 무보강시 무한사면의 안전율에 영향을 미치는 흙의 강도정수 및 사면의 경사 그리고 사면의 두께 이외에도 무한사면요소의 폭과 길이 그리고 억지말뚝에 작용하는 하중에 영향을 받음을 알 수 있었다. 소성변형이론을 바탕으로 하여 억지말뚝보강 무한사면의 안전율을 흙의 강도갱수를 달려하여 살펴본 결과 무보강시에 비해 상당한 안전율 증가효과를 확인할 수 있었는데 본 연구에서 고려한 강도정수와 말뚝간격에 대하여 최소 안전율은 13.7이었고 최대 안전율은 65.6이었다. 억지말뚝의 지름이 증가할수록 말뚝이 부담하는 하중은 증가하지만 안전율은 감소하였는데 이는 억지말뚝 보강 무한사면의 안전율에 영향을 미치는 무한사면요소의 폭과 길이 때문으로 판단된다. 소성흐름이론을 바탕으로 억지말뚝 보강 무한 사면의 안전율을 평균유입속도와 소성점도의 곱($v_1{\eta}_p$)을 달려하여 살펴본 결과 무보강시에 비해 상당한 안전율 증가효과를 확인할 수 있었으며 $v_1{\eta}_p$값이 커질수록 안전율도 커짐을 알 수 있었고 일정한 $v_1{\eta}_p$값에 대하여 말뚝설치간격이 커질수록 안전율은 감소하였다.

전단접합 및 리브 플레이트로 보강한 H형 보-기둥 접합부의 내진성능에 관한 실험적 연구 (An Experimental Study on the Seismic Performance of Shear Connections and Rib Plate H Beam to Column Connections)

  • 오경현;서성연;김성용;양영성;김규석
    • 한국강구조학회 논문집
    • /
    • 제17권5호통권78호
    • /
    • pp.569-580
    • /
    • 2005
  • 기존 강구조 모멘트연성골조시스템의 기둥-보 접합부는 노스리지 지진과 고베 지진시 충분한 내진성능을 발휘하지 못하고 접합부에서 취성파괴가 발생하였다. 본 논문은 기존 접합부의 형상을 변화하여 H형강보 웨브의 고장력볼트 전단접합과 H형 플랜지의 리브보강 유무를 변수로 한 실대형 실험을 실시하였다. 실험목적은 보웨브의 2면전단접합으로 고장력 볼트수 감소와 시공성 향상을 기대하며, 리브플레이트 보강을 통해 내진성능을 향상시키고자 한다. H형강 보웨브의 2면전단접합과 리브플레이트로 보강한 접합부 실험결과, 기존 접합부보다 초기강성, 에너지 소산능력 및 소성회전능력이 높게 나타났으며, 내력상승률 및 변형능력은 전단탭의 위치로 인해 인장측과 압축측이 다소 차이를 보이고 있으나 전체적으로 우수한 내진성능을 나타냈다. 그리고 모든 시험체가 층간변위비 4%, 총소성회능력 약 0.029rad이상 및 접합부 최대내력이 원단면보 전소성모멘트의 약 130% 이상을 상회하여 중급모멘트연성골조이상의 설계가 가능하리라 사료된다.

적응형 관리 기법을 이용한 지반 물성 값의 평가 (Evaluation of Soil Parameters Using Adaptive Management Technique)

  • 구본휘;김태식
    • 한국지반환경공학회 논문집
    • /
    • 제18권2호
    • /
    • pp.47-51
    • /
    • 2017
  • 본 논문에서는 공사현장의 지반 변형을 계측한 값을 바탕으로 지반의 물성 값을 재산정하는 "적응형 관리 기법"의 핵심인 역해석을 통한 물성 값의 최적화 알고리즘을 구현하였다. 적응형 관리 기법은 공사 중 모니터링을 통해 설계와 시공을 업데이트하는 프레임워크를 일컫는다. 최적화 알고리즘의 성능을 검증하기 위해 실내시험과 가상의 굴착현장 두 경우에 대해 Hardening Soil 모델을 사용하여 전산해석을 실시하였다. 최적화 알고리즘을 적용할 구성모델의 입력변수는 복합민감도 값이 큰 입력변수를 선정하여 효율성을 고려하였다. 실내시험의 전산 해석은 비배수상태에서의 삼축압축시험과 삼축인장시험에 대해 시료의 파괴까지 수행하였다. 실제 시카고 연약 점성토로 수행한 삼축시험 결과인 전단응력-변형률과 과잉간극수압-변형률 관계를 관측 값으로 사용하였다. Hardening Soil 모델에 대하여, 관측 값을 가장 잘 모사할 수 있는 물성 값을 산정하기 위해 최적화 알고리즘을 적용하였다. 알고리즘을 적용한 결과, 관측 값을 잘 모사할 수 있는 물성 값을 성공적으로 찾을 수 있었다. 가상의 굴착현장에서는 삼축시험으로부터 산정한 지반의 물성 값을 현장의 대표 물성 값으로 가정하였고, 이때의 굴착 지지벽체의 수평 변위를 주요 관측 값으로 사용하였다. 다양한 초기 물성 값을 사용하여 전산해석을 수행하였고, 이 결과에 최적화 알고리즘을 적용하면 전산해석 결과가 현장 계측 값으로 수렴하는지 평가하였다. 최적화 알고리즘을 적용한 결과, 현장 계측 값으로 전산해석 결과 값이 거의 동일하게 일치함을 확인할 수 있었다.

탑승자 교통사고에서 경추손상 판단을 위한 중증도 요인 분석 (Parameter Analysis to Predict Cervical Spine Injury on Motor Vehicle Accidents)

  • 이희영;육현;공준석;강찬영;성실;이정훈;김호중;김상철;추연일;전혁진;박종찬;최지훈;이강현
    • 자동차안전학회지
    • /
    • 제10권3호
    • /
    • pp.20-26
    • /
    • 2018
  • It was a pilot study for developing an algorithm to determine the presence or absence of cervical spine injury by analyzing the severity factor of the patients in motor vehicle occupant accidents. From August 2012 to October 2016, we used the KIDAS database, called as Korean In-Depth Accident Study database, collected from three regional emergency centers. We analyzed the general characteristics with several factors. Moreover, cervical spine injury patients were divided into two groups: Group 1 for from Quebec Task Force (hereinafter 'QTF') grade 0 to 1, and group 2 for from QTF grade 2 to 4. The score was assigned according to the distribution ratio of cervical spine injured patients compared to the total injured patients, and the cut-off value was derived from the total score by summation of the assigned score of each factors. 987 patients (53.0%) had no cervical spine injuries and 874 patients (47.0%) had cervical spine injuries. QTF grade 2 was found in 171 patients (9.2%) with musculoskeletal pain, QTF grade 3 was found in 38 patients (2.0%) with spinal cord injuries, and QTF grade 4 was found in 119 patients (6.4%) with dislocation or fracture, respectively. We selected the statistically significant factors, which could be affected the cervical spine injury, like the collision direction, the seating position, the deformation extent, the vehicle type and the frontal airbag deployment. Total score, summation of the assigned each factors, 10 was presented as a cut-off value to determine the cervical spine injury. In this study, it was meaningful as a pilot study to develop algorithms by selecting limited influence factors and proposing cut-off value to determine cervical spine injury. However, since the number of data samples was too small, additional data collection and influencing factor analysis should be performed to develop a more delicate algorithm.