• 제목/요약/키워드: deformation parameter

검색결과 718건 처리시간 0.027초

AA5083 합금의 고온 변형시 유동응력 및 연신율에 미치는 온도와 변형 속도의 영향 (The Effects of Temperature and Strain Rate on Flow Stress and Strain of AA5083 Alloy during High Temperature Deformation)

  • 고병철;김종헌;유연철
    • 소성∙가공
    • /
    • 제7권2호
    • /
    • pp.168-176
    • /
    • 1998
  • Hot workability of the AA5083 alloy ws investigated by torsion test at temperature ranges of $350{\sim}520^{\circ}C$ and strain rates of 0.5, 1.0, and 3.0/sec. The flow stress and hot ductility of the AA5083 alloy as a function of deformation variables such as temperature and train rate were studied. The microstructural evolution of the AA5083 alloy was studied in relation to Zener-Hollomon parameter (Z=exp( /RT) Also the hot restoration mechanism of the AA5083 alloy was small when Z val-ues were higher than $1.73{\times}1016/sec(370^{\circ}C,\;0.5/sec)$ In addition the difference microstructures during hot deformation. It was found that the increase of flow curves and deformed microstructures during hot deformation. It was found that the increase of flow stress of the AA5083 alloy was small when Z val-ues were higher than $1.73{\times}1016/sec(370^{\circ}C.\;0.5/sec)$. However under the low Z values less than $1.73{\times}1016/sec(370^{\circ}C,\;0.5/sec)$ the flow stress increase with increasing the Z values. The large dispersoid particles in the matrix grain decreased the flow strain of the AA5083 alloy because it caused the stress concentration during hot deformation.

  • PDF

A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation

  • Bounouara, Fatima;Benrahou, Kouider Halim;Belkorissat, Ismahene;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제20권2호
    • /
    • pp.227-249
    • /
    • 2016
  • The objective of this work is to present a zeroth-order shear deformation theory for free vibration analysis of functionally graded (FG) nanoscale plates resting on elastic foundation. The model takes into consideration the influences of small scale and the parabolic variation of the transverse shear strains across the thickness of the nanoscale plate and thus, it avoids the employ use of shear correction factors. Also, in this present theory, the effect of transverse shear deformation is included in the axial displacements by using the shear forces instead of rotational displacements as in available high order plate theories. The material properties are supposed to be graded only in the thickness direction and the effective properties for the FG nanoscale plate are calculated by considering Mori-Tanaka homogenization scheme. The equations of motion are obtained using the nonlocal differential constitutive expressions of Eringen in conjunction with the zeroth-order shear deformation theory via Hamilton's principle. Numerical results for vibration of FG nanoscale plates resting on elastic foundations are presented and compared with the existing solutions. The influences of small scale, shear deformation, gradient index, Winkler modulus parameter and Pasternak shear modulus parameter on the vibration responses of the FG nanoscale plates are investigated.

듀플렉스 스테인레스 소재의 고온 변형 안정성 및 어닐링 온도에 따른 특성 분석 (Analysis of High Temperature Deformation Stability and Properties of Duplex Stainless Steels According to Annealing Temperature)

  • 권기현;나영상;유위도;이종훈;박용호
    • 대한금속재료학회지
    • /
    • 제50권7호
    • /
    • pp.495-502
    • /
    • 2012
  • The aim of this study was to analyze high temperature deformation stability and properties of duplex stainless steels(DSS) according to annealing temperature. In order to analyze high temperature deformation stability, a number of compression tests were carried out with a stain rate of $10^{-2}s^{-1}{\sim}10s^{-1}$ up to a compression ratio of 50% in a temperature range of $950^{\circ}C-1300^{\circ}C$. The analysis of high temperature deformation stability of DSS was performed based on the Ziegler model. In order to analyze the high temperature properties of DSS, annealing treatments were conducted by isothermal holding for 1 hr at $950^{\circ}C$ to $1300^{\circ}C$ with $50^{\circ}C$ intervals followed by water cooling. The hardness and tensile tests were performed on specimens with different volume fractions of constituent phases, such as austenite, ferrite and sigma. The hardness and tensile strength of 2507 according to the annealing temperature are better than those of 2205. The strain rate sensitivity and Ziegler parameter are higher in 2205 than in 2507 as a whole, which implies that 2205 is better than 2507 in terms of forgeability at high temperature.

A new nonlocal HSDT for analysis of stability of single layer graphene sheet

  • Bouadi, Abed;Bousahla, Abdelmoumen Anis;Houari, Mohammed Sid Ahmed;Heireche, Houari;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • 제6권2호
    • /
    • pp.147-162
    • /
    • 2018
  • A new nonlocal higher order shear deformation theory (HSDT) is developed for buckling properties of single graphene sheet. The proposed nonlocal HSDT contains a new displacement field which incorporates undetermined integral terms and contains only two variables. The length scale parameter is considered in the present formulation by employing the nonlocal differential constitutive relations of Eringen. Closed-form solutions for critical buckling forces of the graphene sheets are obtained. Nonlocal elasticity theories are used to bring out the small scale influence on the critical buckling force of graphene sheets. Influences of length scale parameter, length, thickness of the graphene sheets and shear deformation on the critical buckling force have been examined.

크리이프-피로 상호작용하의 균열성장속도 예측에 관한 연구 (A Study on Prediction of Crack growth Rate Under Creep-Fatigue Interaction)

  • 주원식;조석수
    • 한국해양공학회지
    • /
    • 제9권2호
    • /
    • pp.98-111
    • /
    • 1995
  • High temperature low cycle fatigue shows that cycle-dependent crack growth owing to cyclic plastic deformation occurred simultaneosly with time-dependent crack growth owing to intergranular deformation. Consequently, to estimate crack growth rate uniquely, many to investigators have proposed various kinds of parameters and theories but these could not produce satisfactory results. Therefore the goal of this study is focused on prediction of crack growth rate using predominant damage rule, linear cumulative damage rule and transitional parameter ${\Delta}J_c/{\Delta}J_f$. On the basis of these sinusoidal loading waveform at 600$^{\circ}C$ and 700$^{\circ}C$.

  • PDF

점접촉에서 단무차원매개변수에 관한 실험적 연구 (Experimental Study on Simple Dimensionless Parameter in Higher Pair)

  • 김경모
    • 한국안전학회지
    • /
    • 제9권3호
    • /
    • pp.34-40
    • /
    • 1994
  • It is important to have exact informations on the real contact mechanism between spheres and rough plates under various normal loads, sphere diameters and combined surface roughnesses. Most previous papers have proposed the questions of the errors which might be incurred when the Hertzian theory is used to calculated the contact deformation and the contact pressure of practical higher pair. So, this study investigates the real contact deformation between a rough sphere and a rough plate by three experimental methods far from any assumptions and theorems. The soot coating method among them is used successfully. Accordingly, this study presents the simple dimensionless parameter to predict such errors to occur in the design of high pair members and to govern the real mechanism of two-body higher pair.

  • PDF

하저터널에서 상대내공변위 계측을 통한 지반정수 예측 (Geotechnical parameter estimation in underwater tunnel using relative convergence measurement)

  • 김도훈;장재혁;이인모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.792-802
    • /
    • 2008
  • If a tunnel is constructed below the groundwater level, the groundwater flow will occur inducing the seepage force toward the tunnel and will result in the increase of tunnel convergence. The longitudinal deformation during tunnel excavation will also be increased due to seepage pressure. A back-analysis methodology in underwater tunnel was proposed in this study based on the relative longitudinal deformation measured in-situ. Geotechnical parameters can be estimated utilizing the proposed method where the prior estimate as well as the measured convergence can be reasonably combined by adopting the Extend Bayesian Method.

  • PDF

Wave propagation of FG polymer composite nanoplates reinforced with GNPs

  • She, Gui-Lin
    • Steel and Composite Structures
    • /
    • 제37권1호
    • /
    • pp.27-35
    • /
    • 2020
  • This study examines the wave propagation of the functionally graded polymer composite (FG-PC) nanoplates reinforced with graphene nanoplatelets (GNPs) resting on elastic foundations in the framework of the nonlocal strain gradient theory incorporating both stiffness hardening and softening mechanisms of nanostructures. To this end, the material properties are based on the Halpin-Tsai model, and the expressions for the classical and higher-order stresses and strains are consistently derived employing the second-order shear deformation theory. The equations of motion are then consistently derived using Hamilton's principle of variation. These governing equations are solved with the help of Trial function method. Extensive numerical discussions are conducted for wave propagation of the nanoplates and the influences of different parameters, such as the nonlocal parameter, strain gradient parameter, weight fraction of GNPs, uniform and non-uniform distributions of GNPs, elastic foundation parameters as well as wave number.

304 오스테나이트계 스테인레스강의 고온변형 거동 (High Temperature Deformation Behavior of 304 Stainless Steel)

  • 조상현;김성일;노광섭;유연철
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1996년도 추계학술대회논문집
    • /
    • pp.139-146
    • /
    • 1996
  • The torsion tests in the range of 900~1100$^{\circ}C$ and 5.0X10-2~5.0X100/sec were performed to study the high temperasture deformation behavior kinetics of 304 stainless steels. The flow curves and microstructures exhibited the characteristic of dynamic recrystallization(DRX). The relationship between the critical strain($\varepsilon$c) for the initiation of dynamic recrystallization and the peak strain($\varepsilon$p) could be expressed as $\varepsilon$c=0.73$\varepsilon$p. The dependence of the flow stress on temperature(T) and stain rate($\varepsilon$) was expressed by hyperbolic sine law, $\varepsilon$=2.75X1014 (sinh 0.076$\sigma$)5.26 exp(-379.55kJ/mol). Under the Zener-Hollomon parameter, Z value of 1013 order, it was found that the grain size was 20${\mu}$m. The relationship between the grain size, dDRX and Z parameter was expressed as dDRX =139.48-7.33 log Z.

  • PDF

오일러 매개변수를 이용한 해양 세장체 대변위 거동 해석 (Euler Parameters Method for Large Deformation Analysis of Marine Slender Structures)

  • 홍섭
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.163-167
    • /
    • 2003
  • A novel method for 3-dimensional dynamic analysis of marine slender structure gas been developed by using Euler parameters. The Euler parameter rotation, which is being widely used in aerospace vehicle dynamics and multi-body dynamics, has been applied to elastic structure analysis. Large deformation of flexible slender structures is described by means of Euler parameters. Euler parameter method is implemented effectively in incremental-iterative algorithm for 3D dynamic analysis. The normalization constraint of Euler parameters is efficiently satisfied by means of a sequential updating method.

  • PDF