• Title/Summary/Keyword: deformation of ribbed bars

Search Result 3, Processing Time 0.015 seconds

Bond Analysis of Ribbed Reinforcing Bars

  • Park, Oan-Chul
    • KCI Concrete Journal
    • /
    • v.13 no.2
    • /
    • pp.19-25
    • /
    • 2001
  • A simple expression to predict bond strength of reinforcing bars with rib deformation to the surrounding is derived for the case of splitting bond failure. Finite element analysis is used to model the confining behavior of concrete cover. The roles of the interfacial properties, specifically, the friction coefficient, cohesion, the relative rib area and the rib face angle are examined. Values of bond strength obtained using the analytical model are in good agreement with the bond test results from the previous studies. The analytical model provides insight into interfacial bond mechanisms and the effects of the key variables on the bond strength of deformed bars to concrete. Based on the comparison between the analytical results and the test results, the values of cohesion, coefficient of friction, and the effective rib face angle are proposed.

  • PDF

Towards an Improved Understanding of Bond Behaviors

  • Choi, Oan Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.239-243
    • /
    • 2003
  • A reducing bearing angle theory for bond of ribbed reinforcing bars to concrete is proposed to simulate experimental observation. Analytical expressions to determine bond strength for splitting and pullout failure are derived, where the bearing angle is a key variable. As bearing angle is reduced, splitting strength decreases and shearing strength increases. The proposed reducing bearing angle theory is effective to simulate damage of the deformed bar-concrete interface and understand bond mechanism of ribbed reinforcing steel in concrete structures.

  • PDF

Effects of Bar Deformation on Bond between Reinforcing Steel and Concrete Subjected In Cyclic Loading (반복하중시 철근의 마디형태에 따른 부착특성)

  • 최완철;이재열;이웅세
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.244-250
    • /
    • 2001
  • One of the reasons for brittle failure in reinforced concrete structures subjected to severe earthquake is due to large slip between reinforcing steel and concrete. This study aims to evaluate effects of deformation patterns of ribbed reinforcing bars on bond under cyclic loading. Bond test specimens were constructed with machined bars to test the newly developed reinforcing bars with high relative rib areas. The degree of confinement is also another key parameter in this bond test. From the test results under monotonic and cyclic loading, bond strength and stiffness were evaluated. Bond strength and bond stiffness increase as relative rib areas under cyclic loading for specimens highly confined by transverse reinforcement. The increase rates of the bond performance under cyclic loading are larger than those of specimens under monotonic loading. The developed bars with high relative rib areas will contribute for better bond performance for reinforced concrete structures subjected to severe seismic loadings.