• Title/Summary/Keyword: deformation law

Search Result 452, Processing Time 0.034 seconds

Creep Modelling of Reinforced Earth using Power Law-based Creep Models (Power Law 기반의 크리프 모델을 이용한 보강토 구조물의 크리프 모델링)

  • Kim, Jae-Wang;Kim, Sun-Bin;Yoo, Chung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.164-178
    • /
    • 2009
  • The importance of long-term performance of reinforced earth structures has been gaining its attention as the use of reinforced earth structures as load supporting structures is increasing. When using reinforced earth structures as loading supporting structures the stability as well as serviceability requirements must be met. In that respect the time-dependent long term deformation characteristics should be well understood. In this study the applicability of power law-based creep models for modeling of creep deformation of the components of reinforced earth structures are examined.

  • PDF

Deformation Mechanism Map for Creep and Superplastic Deformation in $YBa_2Cu_3O_{7-x}$ Ceramic Superconductors ($YBa_2Cu_3O_{7-x}$ 세라믹 초전도체의 크리프와 초소성변형에 대한 변형기관도)

  • 윤존도;초우예
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.6
    • /
    • pp.718-724
    • /
    • 1996
  • Deformation mechanism map of Langdon-Mohammed type for YBa2Cu3O7-x superconducting ceramic was constructed by considering mechanisms of Nabarro-Herring Coble and powder-law creep and grain boundary sliding (GBS) with an accommodation by grain boundary diffusion. The map was found consistent with experi-mental results not only of the creep the also of the superplastic deformation. It showed the transition from interface reaction-controlled to the grain boundary diffusion-controlled GBS mechanism at about 1 ${\mu}{\textrm}{m}$ grain size and 100 MPa flow stress in agreement with the experimental results.

  • PDF

Deformation of multiple non-Newtonian drops in the entrance region

  • Kim, See-Jo;Kim, Sang-Dae;Youngdon Kwon
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.2
    • /
    • pp.75-82
    • /
    • 2003
  • In this study, with the finite element method we numerically investigate the deformation of liquid drops surrounded by Newtonian or non-Newtonian viscous medium in the axisymmetric contraction flow. 1, 2 or 4 Newtonian or non-Newtonian drops are considered and the truncated power-law model is applied In order to describe non-Newtonian viscous behavior for both fluids. In this type of flow the drop exhibits considerably large deformation, and thus techniques of unstructured mesh generation and auto-remeshing are employed to accurately express the fluid mechanical behavior. We examine the deformation pattern of liquid drops with viscosity dependence different from that of the surrounding medium and also explain their interactions by comparing relative position or speed of drop front.

Comparison of Time-Dependent Deformation in Unconsolidated Mudstones with Different Clay Content (점토함량에 따른 미고결 이암의 시간 의존적 변형 비교)

  • Chang, Chan-Dong;Myoung, Woo-Ho;Lee, Tae-Jong
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.207-214
    • /
    • 2008
  • We conducted uniaxial consolidation tests in mudstone samples with different clay content, in order to investigate time-dependent deformation and its characteristics. A significant amount of time-dependent strain was observed at a constant stress level immediately after a jump of stress was applied. For a given mudstone, the amount of time-dependent deformation was nearly proportional to the increment of stress, suggesting a linear viscous rheology. The amount of time-dependent strain increases with clay content, implying that clay plays an important role in creep of the unconsolidated mudstone. A power-law model was suitably applied to our results, suggesting that a short-term prediction of time-dependent deformation of the mudstone is tentatively feasible.

Assessment of Gradient-based Digital Speckle Correlation Measurement Errors

  • Jian, Zhao;Dong, Zhao;Zhe, Zhang
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.372-380
    • /
    • 2012
  • The optical method Digital Speckle Correlation Measurement (DSCM) has been extensively applied due its capability to measure the entire displacement field over a body surface. A formula of displacement measurement errors by the gradient-based DSCM method was derived. The errors were found to explicitly relate to the image grayscale errors consisting of sub-pixel interpolation algorithm errors, image noise, and subset deformation mismatch at each point of the subset. A power-law dependence of the standard deviation of displacement measurement errors on the subset size was established when the subset deformation was rigid body translation and random image noise was dominant and it was confirmed by both the numerical and experimental results. In a gradient-based algorithm the basic assumption is rigid body translation of the interrogated subsets, however, this is in contradiction to the real circumstances where strains exist. Numerical and experimental results also indicated that, subset shape function mismatch was dominant when the order of the assumed subset shape function was lower than that of the actual subset deformation field and the power-law dependence clearly broke down. The power-law relationship further leads to a simple criterion for choosing a suitable subset size, image quality, sub-pixel algorithm, and subset shape function for DSCM.

Constitutive Models for Final Stage Densification of Powder Compacts with Power-Law Creep Deformation (Power-law 크리프 변형을 따르는 분말 성형체의 말기 치밀화 모델)

  • Yang, Hoon-Chul;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.930-939
    • /
    • 2004
  • Constitutive models for final stage densification of metal powder compacts with power-law creep deformation were investigated. The constitutive models were implemented into a finite element program (ABAQUS) by using user subroutine CREEP and, from FEM results, useful densification curves were obtained when hydrostatic and uniaxial stress were applied to the powder compacts at various pressures and temperatures. Because the densification behavior varied as the constitutive models, the equivalent stress surface on each constitutive equation was investigated to analyze the difference of densification behavior.

Thermoelastic deformation behavior of functionally graded cylindrical panels with multiple perforations

  • Shyam K. Chaudhary;Vishesh R. Kar;Karunesh K. Shukla
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.2
    • /
    • pp.127-140
    • /
    • 2023
  • The present article focuses on the thermoelastic deformation behavior of inhomogeneous functionally graded metal/ceramic cylindrical shell structure with multiple perforations using 2D finite element approximation. Here, cylindrical shell structure is considered with single (1×1) and multiple (2×2, 3×3 and 4×4) perforations. The temperature-dependent elastic and thermal properties of functionally graded material are evaluated using Voigt's micromechanical material scheme via power-law function. The kinematics of the proposed model is based on the equivalent single-layer first-order shear deformation mid-plane theory with five degrees-of-freedom. Here, 2D isoparametric finite element solutions are obtained using eight-node quadrilateral elements. The mesh refinement of present finite element model is performed to confirm the appropriate number of elements and nodes for the analysis purpose. Subsequently, a comparison test is conducted to demonstrate the accuracy of present results. In later section, numerous numerical illustrations are demonstrated at different set of conditions by varying structural, material and loading parameters and that confirms the significance of various parameters such as power-law index, aspect ratio, thickness ratio, curvature ratio, number of perforations and temperature on the deformation characteristics of functionally graded cylindrical shell structure.

High Temperature Plastic Deformation Condition of Al 6061 Alloy (Al 6061 합금의 고온 소성변형 조건에 관한 연구)

  • 김성일;정태성;유연철;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.76-79
    • /
    • 1998
  • High temperature plastic deformation behavior of Al 6061 alloy was characterized by hot torsion test. The Al 6061 alloy deformed continuously in the temperature range of 400∼550$^{\circ}C$, and strain rate range of 0.05∼5/sec. The softening mechanism of Al 6061 alloy was dynamic recrystallization and identified by hyperbolic sine law and zener-Hollmon parameter. The evolution of grain size and deformation resistance were calculated by the relationships of deformation variables.

  • PDF

Estimation of C*-Integral for Defective Components with General Creep-Deformation Behaviors (일반 크리프 거동을 고려한 균열 구조물 C*-적분 예측)

  • Kim, Yeong-Jin;Kim, Jin-Su;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.795-802
    • /
    • 2002
  • For assessing significance of a defect in a component operating at high (creeping) temperatures, accurate estimation of fracture mechanics parameter, $C^{*}$-integral, is essential. Although the J estimation equation in the GE/EPRl handbook can be used to estimate the $C^{*}$-integral when the creep -deformation behavior can be characterized by the power law creep, such power law creep behavior is a very poor approximation for typical creep behaviors of most materials. Accordingly there can be a significant error in the $C^{*}$-integral. To overcome problems associated with GE/EPRl approach, the reference stress approach has been proposed, but the results can be sometimes unduly conservative. In this paper, a new method to estimate the $C^{*}$-integral for deflective components is proposed. This method improves the accuracy of the reference stress approach significantly. The proposed calculations are then validated against elastic -creep finite element (FE) analyses for four different cracked geometries following various creep -deformation constitutive laws. Comparison of the FE $C^{*}$-integral values with those calculated from the proposed method shows good agreements.greements.

Mechanical evolution law and deformation characteristics of preliminary lining about newly-built subway tunnel closely undercrossing the existing station: A case study

  • Huijian Zhang;Gongning Liu;Weixiong Liu;Shuai Zhang;Zekun Chen
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.525-538
    • /
    • 2023
  • The development of a city is closely linked to the construction and operation of its subway system. However, constructing a new subway tunnel under an existing station is an extremely complex task, and the deformation characteristics and mechanical behavior of the new subway tunnel during the excavation process can greatly impact the normal operation of the existing station. Although the previous studies about the case of underpass engineering have been carried out, there is limited research on the condition of a newly-built subway tunnel that closely undercrossing an existing station with zero distance between them. Therefore, this study analyzes the deformation law and mechanical behavior characteristics of the preliminary lining of the underpass tunnel during the excavation process based on the real engineering case of Chengdu Metro Line 8. This study also makes an in-depth comparison of the influence of different excavation methods on this issue. Finally, the accuracy of numerical simulation is verified by comparing it with on-site result. The results indicate that the maximum bending moment mainly occurs at the floor slab of the preliminary lining, while that of the ceiling is small. The stress state at the ceiling position is less affected by the construction process of the pilot tunnel. Compared to the all-in-one excavation method, although the process of partial excavation method is more complicated, the deformation of preliminary lining caused by it is basically less than the upper limit value of the standard, while that of the all-in-one excavation method is beyond standard requirements.