• 제목/요약/키워드: deformation dependent

검색결과 632건 처리시간 0.022초

구조물-비구조요소 2자유도 결합시스템 해석을 통한 비구조요소 내진설계변수 평가 (Evaluation of Seismic Design Parameters for Nonstructural Components Based on Coupled Structure-Nonstructural 2-DOF System Analysis)

  • 배창준;이철호;전수찬
    • 한국지진공학회논문집
    • /
    • 제26권3호
    • /
    • pp.105-116
    • /
    • 2022
  • Seismic demand on nonstructural components (NSCs) is highly dependent on the coupled behavior of a combined supporting structure-NSC system. Because of the inherent complexities of the problem, many of the affecting factors are inevitably neglected or simplified based on engineering judgments in current seismic design codes. However, a systematic analysis of the key affecting factors should establish reasonable seismic design provisions for NSCs. In this study, an idealized 2-DOF model simulating the coupled structure-NSC system was constructed to analyze the parameters that affect the response of NSCs comprehensively. The analyses were conducted to evaluate the effects of structure-NSC mass ratio, structure, and NSC nonlinearities on the peak component acceleration. Also, the appropriateness of component ductility factor (Rp) given by current codes was discussed based on the required ductility capacity of NSCs. It was observed that the responses of NSCs on the coupled system were significantly affected by the mass ratio, resulting in lower accelerations than the floor spectrum-based response, which neglected the interaction effects. Also, the component amplification factor (ap) in current provisions tended to underestimate the dynamic amplification of NSCs with a mass ratio of less than 15%. The nonlinearity of NSCs decreased the component responses. In some cases, the code-specified Rp caused nonlinear deformation far beyond the ductility capacity of NSCs, and a practically unacceptable level of ductility was required for short-period NSCs to achieve the assigned amount of response reduction.

Large cylindrical deflection analysis of FG carbon nanotube-reinforced plates in thermal environment using a simple integral HSDT

  • Djilali, Nassira;Bousahla, Abdelmoumen Anis;Kaci, Abdelhakim;Selim, Mahmoud M.;Bourada, Fouad;Tounsi, Abdeldjebbar;Tounsi, Abdelouahed;Benrahou, Kouider Halim;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제42권6호
    • /
    • pp.779-789
    • /
    • 2022
  • This work presents a non-linear cylindrical bending analysis of functionally graded plate reinforced by single-walled carbon nanotubes (SWCNTs) in thermal environment using a simple integral higher-order shear deformation theory (HSDT). This theory does not require shear correction factors and the transverse shear stresses vary parabolically through the thickness. The material properties of SWCNTs are assumed to be temperature-dependent and are obtained from molecular dynamics simulations. The material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTCRs) are considered to be graded in the thickness direction, and are estimated through a micromechanical model. The non-linear strain-displacement relations in the Von Karman sense are used to study the effect of geometric non-linearity and the solution is obtained by minimization of the total potential energy. The numerical illustrations concern the nonlinear bending response of FG-CNTRC plates under different sets of thermal environmental conditions, from which results for uniformly distributed CNTRC plates are obtained as benchmarks.

Assessment of Voigt and LRVE models for thermal shock analysis of thin FGM blade: A neutral surface approach

  • Ankit Kumar;Shashank Pandey
    • Structural Engineering and Mechanics
    • /
    • 제85권1호
    • /
    • pp.105-118
    • /
    • 2023
  • The present work is an attempt to develop a simple and accurate finite element formulation for the assessment of thermal shock/thermally induced vibrations in pretwisted and tapered functionally graded material thin (FGM) blades obtained from Voigt and local representative volume elements (LRVE) homogenization models, based on neutral surface approach. The neutral surface of the FGM blade does not coincide with its mid-surface. A finite element model (FEM) is developed using first-order shear deformation theory (FSDT) and the FGM turbine blade is modelled according to the shallow shell theory. The top and the bottom layers of the FGM blade are made of pure ceramic and pure metal, respectively and temperature-dependent material properties are functionally graded in the thickness direction, the position of the neutral surface also depends on the temperature. The material properties are estimated according to two different homogenization models viz., Voigt or LRVE. The top layer of the FGM blade is subjected to high temperature and the bottom surface is either thermally insulated or kept at room temperature. The solution of the nonlinear profile of the temperature in the thickness direction is obtained from the Fourier law of heat conduction in the unsteady state. The results obtained from the present FEM are compared with the benchmark examples. Next, the effect of angle of twist, intensity of thermal shock, variable chord and span and volume fraction index on the transient response due to thermal shock obtained from the two homogenization models viz., Voigt and LRVE scheme is investigated. It is shown that there can be a significant difference in the transient response calculated by the two homogenization models for a particular set of material and geometric parameters.

Impact of viscoelastic foundation on bending behavior of FG plate subjected to hygro-thermo-mechanical loads

  • Ismail M. Mudhaffar;Abdelbaki Chikh;Abdelouahed Tounsi;Mohammed A. Al-Osta;Mesfer M. Al-Zahrani;Salah U. Al-Dulaijan
    • Structural Engineering and Mechanics
    • /
    • 제86권2호
    • /
    • pp.167-180
    • /
    • 2023
  • This work applies a four-known quasi-3D shear deformation theory to investigate the bending behavior of a functionally graded plate resting on a viscoelastic foundation and subjected to hygro-thermo-mechanical loading. The theory utilizes a hyperbolic shape function to predict the transverse shear stress, and the transverse stretching effect of the plate is considered. The principle of virtual displacement is applied to obtain the governing differential equations, and the Navier method, which comprises an exponential term, is used to obtain the solution. Novel to the current study, the impact of the viscoelastic foundation model, which includes a time-dependent viscosity parameter in addition to Winkler's and Pasternak parameters, is carefully investigated. Numerical examples are presented to validate the theory. A parametric study is conducted to study the effect of the damping coefficient, the linear and nonlinear loadings, the power-law index, and the plate width-tothickness ratio on the plate bending response. The results show that the presence of the viscoelastic foundation causes an 18% decrease in the plate deflection and about a 10% increase in transverse shear stresses under both linear and nonlinear loading conditions. Additionally, nonlinear loading causes a one-and-a-half times increase in horizontal stresses and a nearly two-times increase in normal transverse stresses compared to linear loading. Based on the article's findings, it can be concluded that the viscosity effect plays a significant role in the bending response of plates in hygrothermal environments. Hence it shall be considered in the design.

암반에 근입된 현장타설말뚝의 선단하중전이거동 분석 (End Bearing Load Transfer Behavior of Rock Socketed Drilled Shafts)

  • 조후연;정상섬;설훈일
    • 한국지반공학회논문집
    • /
    • 제25권8호
    • /
    • pp.77-93
    • /
    • 2009
  • 본 연구에서는 3차원 유한차분해석을 통하여 말뚝직경, 암반물성, 불연속면의 간격 및 방향 등 주요 인자가 암반근입 현장타설말뚝의 선단거동에 미치는 영향에 대한 분석을 수행하였으며, 이를 토대로 초기기울기 및 극한 단위선단지지력을 변수로 하는 쌍곡선형태의 선단하중전이(q-w)함수를 제안하였다. 제안식의 국내 암반지반에의 적용을 위하여 국내에서 수행된 14개 현장 23본의 시험말뚝의 재하시험자료를 토대로 제안식의 경험계수를 산정하였으며, 더불어 기존 초기기울기 및 극한단위선단지지력 산정식의 타당성 검토도 수행하였다. 현장재하시험 사례와의 비교분석 결과, 본 연구에서 제안된 산정식은 국내 암반지반에 근임된 현장타설말뚝의 선단거동을 비교적 잘 예측 가능하고, 말뚝지지력 및 침하량 예측값이 실측값에 가까움을 알 수 있었다.

모래지반에서 측방변형을 받는 무리말뚝의 실험적 연구 (The Study of Group Piles under Lateral Soil Movement in Sand by Model test)

  • 배종순;김성호;권민재
    • 한국지반공학회논문집
    • /
    • 제22권10호
    • /
    • pp.165-172
    • /
    • 2006
  • 본 연구에서는 합천사에 매설되어 측방변형을 받는 무리말뚝의 거동특성을 분석하였다. 무리말뚝의 위치, 말뚝의 간격과 말뚝배열이 미치는 무리말뚝의 영향을 알고자 하였다. 실험결과는 다음과 같다. 무리말뚝에서는 모멘트 형상은 단독말뚝과 유사하나 최대 휨모멘트의 발생깊이가 깊어지고, 그 크기는 감소하였다. 말뚝의 중심간격이 증가할수록 최대휨모멘트비$(R_M)$와 수평력분담비$(R_F)$는 증가하였다. 지반변형에 따른 $R_M$은 열방향에서는 후열, 전열, 중간열의 순으로 크게 나타났고 줄방향에서는 내측보다 외측이보다 크게 나타났다.

콘크리트 크리프 예측을 위한 유변학적 접근 (A Rheological Approach on Prediction of Concrete Creep)

  • 권기연;민경환;김율희;윤영수
    • 대한토목학회논문집
    • /
    • 제29권1A호
    • /
    • pp.85-93
    • /
    • 2009
  • 본 논문은 콘크리트의 크리프 현상에 대한 보다 단순하고 합리적인 유변학적 모델을 구성하고, 크리프 예측 모델 개발에 대한 하나의 방법론을 제시하는 데에 일차적인 목표가 있다. 장기적인 응력에 의한 콘크리트의 변형은 발생 메커니즘과 시간 의존성 여부에 따라 즉각적인 탄성 변형과 시간 의존적 단기 크리프, 시간 독립적 단기 크리프, 장기 크리프의 합으로 볼 수 있으며, 이들 변형을 모사하기 위해 6개의 매개변수를 갖는 유변학 모델을 구성하였다. 각 매개변수의 구성에는 미세 프리스트레스 고체화 이론과 기존 설계기준을 활용하였고, 이론적 접근이 어려운 경우에 한해 수치적 접근을 시도하였다. 수립된 모델의 검증은 실제 실험 데이터를 사용하였고, 기존 모델 및 설계식과 비교 평가하여 그 합리성을 확인하였다.

Porosity-dependent vibration investigation of functionally graded carbon nanotube-reinforced composite beam

  • Abdulmajeed M. Alsubaie;Ibrahim Alfaqih;Mohammed A. Al-Osta;Abdelouahed Tounsi;Abdelbaki Chikh;Ismail M. Mudhaffar;Saeed Tahir
    • Computers and Concrete
    • /
    • 제32권1호
    • /
    • pp.75-85
    • /
    • 2023
  • This work utilizes simplified higher-order shear deformation beam theory (HSDBT) to investigate the vibration response for functionally graded carbon nanotube-reinforced composite (CNTRC) beam. Novel to this work, single-walled carbon nanotubes (SWCNTs) are distributed and aligned in a matrix of polymer throughout the beam, resting on a viscoelastic foundation. Four un-similar patterns of reinforcement distribution functions are investigated for the CNTRC beam. Porosity is another consideration taken into account due to its significant effect on functionally graded materials (FGMs) properties. Three types of uneven porosity distributions are studied in this study. The damping coefficient and Winkler's and Pasternak's parameters are considered in investigating the viscosity effect on the foundation. Moreover, the impact of different parameters on the vibration of the CNTRC beam supported by a viscoelastic foundation is discussed. A comparison to other works is made to validate numerical results in addition to analytical discussions. The findings indicate that incorporating a damping coefficient can improve the vibration performance, especially when the spring constant factors are raised. Additionally, it has been noted that the fundamental frequency of a beam increases as the porosity coefficient increases, indicating that porosity may have a significant impact on the vibrational characteristics of beams.

Evaluation of Bending Creep Performance of Laminated Veneer Lumber (LVL) Formwork for the Design of Timber Concrete Composite (TCC) Structures

  • Hyun Bae KIM;Takuyuki YOSHIOKA;Kazuhiko FUJITA;Jun ITO;Haruka NOHARA;Keiji NOHARA;Toshiki NARITA;Wonwoo LEE;Arata HOSOKAWA;Tetsuiji TANAKA
    • Journal of the Korean Wood Science and Technology
    • /
    • 제52권4호
    • /
    • pp.375-382
    • /
    • 2024
  • The study focuses on evaluating the bending creep performance of laminated veneer lumber (LVL) formwork in timber concrete composite (TCC) structures. Timber-framed construction is highlighted for its environmental benefits and seismic resistance, but limitations such as poor tensile strength and brittle failure in bending hinder its use in high-rise buildings. Wood-concrete hybrid structures, particularly those using reinforced concrete slabs with TCC floors, emerge as a potential solution. The research aims to understand the time-dependent behavior of TCC components, considering factors like wood and concrete shrinkage and connection creep. The experiment was conducted in western Japan on the TCC floor designed for use in the Kama-city Inatsuki-higashi compulsory education school. The LVL formwork, measuring 9,000 mm by 900 mm, and concrete is loaded onto it for testing. The creep test periods are examined using concrete loading. It employs a comprehensive creep analysis, adhering to Japanese standards, involving deflection measurements and regression analysis to estimate the creep coefficient. Results indicate substantial deformation after shoring removal, suggesting potential reinforcement needs. The study recommends extending test periods for improved accuracy and recognizing regional climate impacts. Overall, the research provides valuable insights into the potential of LVL formwork in TCC structures, emphasizing safety considerations and paving the way for further experimentation under varied conditions to validate structural integrity.

도로 공용성 평가를 위한 모니터링 시스템 개발: 노면온도 및 동적 하중 (A Development of Monitoring System for Evaluating Factors of Road Serviceability: Road Surface Temperature and Dynamic Loads)

  • 조은세상;장준봉
    • 대한토목학회논문집
    • /
    • 제44권2호
    • /
    • pp.237-244
    • /
    • 2024
  • 도로관리시스템(PMS)은 균열, 소성변형 등 포장상태를 정량적으로 평가하여 도로공용성을 산정하고 유지보수를 진행한다. 도로관리시스템의 도로공용성평가는 당시의 도로표면상태를 나타내지만, 도로상태는 시간에 따라 악화된다. 체계화된 도로공용성평가는 도로환경에 대한 시계열 인자가 포함되는 것이 필요하고 그것이 도로관리시스템을 향상시킬 것으로 보인다. 강우, 온도, 차량 하중 등이 도로환경인자가 될 수 있다. 현재는 이러한 인자를 측정하고 상관관계를 나타낸 자료가 없으며, 실험을 통해서 경제적 장비를 제작하고 자료를 얻는 방법을 제시하고자 한다. 여기서는 온도와 차량하중을 고려하기 위해 온도계측과 가속도계측을 시도하고 도로공용성 평가법을 개선하는 데 필요한 자료 제공방법을 제시하였다.