• Title/Summary/Keyword: deformation characteristic

Search Result 493, Processing Time 0.028 seconds

Flexible Multibody Dynamic Analysis of the Wiper System for Automotives (자동차 와이퍼 시스템의 유연 다물체 동역학 해석)

  • Jung, Sung-Pil;Park, Tae-Won;Cheong, Won-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.175-181
    • /
    • 2010
  • This paper presents the dynamic analysis method for estimating the performance of flat-type blades in wiper systems. The blade has nonlinear characteristics since the rubber is a hyper-elastic material. Thus, modal coordinate and absolute nodal coordinate formulations were used to describe the dynamic characteristic of the blade. The blade was structurally analyzed to find the bending characteristics of the cross section of the blade. According to the analysis results, the blade section is divided into three deformation bodies: rigid, small, and large. For the small deformation body, the modal coordinate formulation is used, while the absolute nodal coordinate formulation is used for the large deformation body. To verify the dynamic analysis result, an experiment was performed. The simulation and experiment results were compared to verify the flexible multi-body dynamic model.

Numerical Analysis on the Stress and Deformation Behavior Characteristics of Flexible Joint for a Gas Pipe (가스배관용 플렉시블 조인트의 응력 및 변형거동특성에 관한 수치적 연구)

  • Kim, Chung-Kyun;Kim, Kyung-Seob
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.4
    • /
    • pp.39-43
    • /
    • 2011
  • In this study, the stress and deformation behavior characteristics of a flexible joint for a gas pipe have been analyzed by a finite element method. These characteristic results may investigate the strength safety analysis of a flexible joint, which is composed by a spiral corrugation pipe or a rectangular corrugation model and a plane pipe. The FEM computed results show that an optimized spiral corrugation pipe model is a inclined angle of $4.7^{\circ}$ and a corrugation height of 1.5mm. And also, a rectangular corrugation pipe model of $90^{\circ}$ is recommended in strength safety rather than a spiral corrugation pipe with an inclined angle. Thus, a corrugated pipe for an increased strength safety is to recommend a reduced pitch and curvature radius of an inclined corrugation.

Analysis of Dynamically Penetrating Anchor based on Coupled Eulerian-Lagrangian (CEL) Method (Coupled Eulerian-Lagrangian (CEL) 방법을 이용한 Dynamically Penetrating Anchor의 동적 거동 분석)

  • Kim, Youngho;Jeong, Sang-Seom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.895-906
    • /
    • 2014
  • A fundamental study of the dynamically penetrating anchor (DPA - colloquially known as torpedo anchor) embedded into deep seabed was conducted using measurement data and numerical approaches. Numerical simulation of such a structure penetration was often suffered by severe mesh distortion arising from very large soil deformation, complex contact condition and nonlinear soil behavior. In recent years, a Coupled Eulerian-Lagrangian method (CEL) has been used to solve geomechanical boundary value problems involving large deformations. In this study, 3D finite element analyses using the CEL formulation are carried out to simulate the construction process of dynamic anchors. Through comparisons with results of field measurements, the CEL method in the present study is in good agreement with the general trend observed by in-situ measurements and thus, predicts a realistic large deformation movement for the dynamic anchors by free-fall dropping, which the conventional FE method cannot. Additionally, the appropriate parametric studies needed for verifying the characteristic of dynamic anchor are also discussed.

A Study on Three-dimensional Effects and Deformation of Textile Fabrics: Dynamic Deformations of Silk Fabrics

  • Kim, Minjin;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.17 no.6
    • /
    • pp.28-43
    • /
    • 2013
  • Recent trends toward the collaborations among various sectors of academia and research areas have brought interests and significances in new activities especially in the fashion and textile areas. One of the collaboration examples is the recent research projects on 3D virtual clothing systems based on the 3D CAD software. The 3D virtual clothing systems provide simulated apparels with high degrees of fidelity in terms of color, texture, and structural details. However, since real fabrics exhibit strong nonlinearity, anisotropy, viscoelasticity, and hysteresis, the 3D virtual clothing systems need fine tuning parameters for the simulation process. In this study, characteristics of silk fabrics, which are woven by using degummed silk and raw silk yarns, are being analyzed and compared. Anisotropic properties may be measured as warp and filling direction properties separately in woven fabrics, such as warp tensile stress or filling bending rigidity. Hysteretic properties may be measured as bending hysteresis or shear hysteresis by using KES measurements. These data provide deformation-force relationships of the fabric specimen. Three-dimensional effects obtained when using these characteristic fabrics are also analyzed. The methods to control the three-dimensional appearance of the sewn fabric specimens when utilizing a programmable microprocessor-based motor device, as prepared in this study, are presented. Based on the physical and mechanical properties measured when using the KES equipment, the property parameters are being into a 3-dimensional virtual digital clothing system, in order to generate a virtual clothing product based on the measured silk fabric properties.

The Characteristics of Creep for Dispersion Strengthened Copper (분산강화 동합금의 Creep 특성)

  • Park, K.C.;Kim, G.H.;Mun, J.Y.;Choi, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.4
    • /
    • pp.220-227
    • /
    • 2001
  • The static creep behaviors of dispersion strengthened copper GlidCop were investigated over the temperature range of $650{\sim}690^{\circ}C$ (0.7Tm) and the stress range of 40~55 MPa (4.077~5.61 $kg/mm^2$). The stress exponents for the static creep deformation of this alloy was 8.42, 9.01, 9.25, 9.66 at the temperature of 690, 677, 663, and $650^{\circ}C$, respectively. The stress exponent, (n) increased with decreasing the temperature and became dose to 10. The apparent activation energy for the static creep deformation, (Q) was 374.79, 368.06, 361.83, and 357.61 kg/mole for the stress of 40, 45, 50, and 55 MPa, respectively. The activation energy (Q) decreased with increasing the stress and was higher than that of self diffusion of Cu in the dispersion strengthened copper. In results, it can be concluded that the static creep deformation for dispersion strengthened copper was controlled by the dislocation climb over the ranges of the experimental conditions. Larson-Miller parameter (P) for the crept specimens for dispersion strengthened copper under the static creep conditions was obtained as P=(T+460)(logtr+23). The failure plane observed for SEM slightly showed up transgranular at that experimental range, however, universally it was dominated by characteristic of the intergranular fracture.

  • PDF

Behavior Analysis of Soil Nailed Wall through Large Scaled Load Test (대형파괴재하시험을 통한 쏘일네일 벽체의 거동분석)

  • Kang, Inkyu;Kwon, Youngho;Park, Shinyoung;Lee, Seunghyun;Kim, Hongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.3
    • /
    • pp.51-60
    • /
    • 2008
  • Soil nailing systems are generally many used to the temporary structure in underground excavations and reinforcements of slopes in Korea. However, large-scaled experimental studies related to soil nailing systems are mostly studies related to performance monitoring and field pullout tests. Specially, there are no researches related in the large scaled load tests of soil nailed walls in Korea. In this study, a case study on the large scaled load tests of soil nailed walls is introduced and the behavior characteristic of them is investigated. Also, they are proposed allowable deformation corresponding to the serviceability limit of soil nailed walls and ultimate deformation corresponding to the collapse state of the walls. These results can be applied to the maintenance management of soil nailed walls. And analysis on the required minimum factor of safety of soil nailed walls using the relation curve of load ratio and deformation ratio are carried out.

  • PDF

Modelling and Analysis of Roll-Type Steel Mat for Rapid Stabilization of Permafrost (II) - Parametric Analysis - (영구동토 급속안정화를 위한 롤타입강재매트의 모델링과 해석(II) - 변수해석 -)

  • Moon, Do Young;Kang, Jae Mo;Lee, Janggeun;Lee, Sang Yoon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.109-117
    • /
    • 2014
  • Using the finite element analysis model presented in accompanying paper, parametric study was performed in this paper. Various parameters were considered such as the width of wheel loads-induced permanent plastic deformation, backfill, equivalent thickness and orthogonal characteristic of steel mats. The effects of these parameters were analyzed for vertical and rotational displacements, maximum moment and tensile stress. From the parametric studies, it is found that great vertical deflection and tensile stress above allowable flexural tensile strength are developed in steel mats by the wheel loads-induced permanent plastic deformation. Backfill or increasing the thickness of steel mats is a feasible solution on this problem.

Right Atrial Deformation Mechanics in Children with Adenotonsillar Hypertrophy

  • Kang, Soo Jung;Kwon, Yoo Won
    • Journal of Cardiovascular Imaging
    • /
    • v.26 no.4
    • /
    • pp.201-213
    • /
    • 2018
  • BACKGROUND: Children with significant adenotonsillar hypertrophy (ATH) may show right ventricular (RV) dysfunction. We aimed to evaluate RV dysfunction in such children before adenotonsillectomy by evaluating peak longitudinal right atrial (RA) strain (PLRAS) in systole. PLRAS, electrocardiogram (ECG) and conventional echocardiographic parameters were compared to distinguish children with significant ATH with sleep-related breathing disorder (ATH-SRBD) from controls. METHODS: Fifty-six children (23 controls and 33 children with ATH-SRBD without symptoms of heart failure) were retrospectively studied. Preoperative echocardiograms and ECGs of children with ATH-SRBD who underwent adenotonsillectomy were compared to those of controls. Available postoperative ECGs and echocardiograms were also analyzed. RESULTS: Preoperatively, prolonged maximum P-wave duration (Pmax) and P-wave dispersion (PWD), decreased PLRAS, and increased tricuspid annulus E/E' were found in children with ATH-SRBD compared to those of controls. From the receiver operating characteristic curves, PLRAS was not inferior compared to tricuspid annulus E/E', Pmax, and PWD in differentiating children with ATH-SRBD from controls; however, the discriminative abilities of all four parameters were poor. In children who underwent adenotonsillectomy, echocardiograms $1.2{\pm}0.4$ years after adenotonsillectomy showed no difference in postoperative PLRAS and tricuspid annulus E/E' when compared with those of the preoperative period. CONCLUSIONS: Impaired RA deformation was reflected as decreased PLRAS in children with ATH-SRBD before adenotonsillectomy. Decreased PLRAS in these children may indicate subtle RV dysfunction and increased proarrhythmic risk. However, usefulness of PLRAS as an individual parameter in differentiating preoperative children with ATH-SRBD from controls was limited, similar to those of tricuspid annulus E/E', Pmax, and PWD.

Development of Hybrid Model for Simulating of Diesel Spary Dynamics (디젤분무의 모사를 위한 혼합 모델의 개발)

  • 김정일;노수영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.8-19
    • /
    • 2001
  • A number of atomization and droplet breakup models have been developed and used to predict the diesel spray characteristic. Most of these models could not provide reasonable computational result of the diesel spray characteristic because they have only considered the primary breakup. A hybrid model is, therefore, required to develop by considering the primary and secondary breakup of liquid jet. according to this approach, wave breakup(WB) model was used compute the primary breakup of the liquid jet and droplet deformation and breakup(DDB) model was used for the secondary breakup of droplet. Development of hybrid model by using KIVA-II code was performed by comparing with the experimental data of spray tip penetration and SMD from the literature. A hybrid model developed in this study could provide the good agreement with the experimental data of spray tip penetration. The prediction results of SMD were in good agreement between 0.5 and 1.0 ms after the start of injection. Numerical results obtained by the present hybrid model have the good agreement with the experimental data with the breakup time constant in WB model of 30, and DDB model constant Ck of 1.0 when the droplet becomes less than 95% of maximum droplet diameter injected.

  • PDF

Analytical Asymptotic Solutions for Rectangular Laminated Composite Plates

  • Lee, Jae-Hun;Cho, Maeng-Hyo;Kim, Jun-Sik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.200-209
    • /
    • 2011
  • An analytical solution for rectangular laminated composite plates was obtained via a formal asymptotic method. From threedimensional static equilibrium equations, the microscopic one-dimensional and macroscopic two-dimensional equations were systematically derived by scaling of the thickness coordinate with respect to the characteristic length of the plate. The onedimensional through-the-thickness analysis was performed by applying a standard finite element method. The derived twodimensional plate equations, which take the form of recursive equations, were solved under sinusoidal loading with simplysupported boundary conditions. To demonstrate the validity and accuracy of the present method, various types of composite plates were studied, such as cross-ply, anti-symmetric angle-ply and sandwich plates. The results obtained were compared to those of the classical laminated plate theory, the first-order shear deformation theory and the three-dimensional elasticity. In the present analysis, the characteristic length of each composite was dependent upon the layup configurations, which affected the convergence rate of the method. The results shown herein are promising that it can serve as an efficient tool for the analysis and design of laminated composite plates.