• Title/Summary/Keyword: deformation characteristic

Search Result 493, Processing Time 0.028 seconds

Calculation of Welding Deformations by Simplified Thermal Elasto-plastic Analysis

  • Seo Sung Il
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.3
    • /
    • pp.40-49
    • /
    • 2004
  • Welding deformations injure the beauty of appearance of a structure, decrease its buckling strength and prevent increase of productivity. Welding deformations of real structures are complicated and the accurate prediction of welding deformations has been a difficult problem. This study proposes a method to predict the welding deformations of large structures accurately and practically based on the simplified thermal elasto-plastic analysis method. The proposed method combines the inherent strain theory with the numerical or theoretical analysis method and the experimental results. The weld joint is assumed to be divided into 3 regions such as inherent strain region, material softening region and base metal region. Characteristic material properties are used in structural modeling and analysis for reasonable simplification. Calculated results by this method show good agreement with the experimental results. It was proven that this method gives an accurate and efficient solution for the problem of welding deformation calculation of large structures.

Computational electromechanical approach for stability/instability of smart system actuated with piezoelectric NEMS

  • Luo, Zhonghua;Cheng, Xiaoling;Yang, Yuhan
    • Advances in Computational Design
    • /
    • v.7 no.3
    • /
    • pp.211-227
    • /
    • 2022
  • In this research, the size-dependent impact of an embedded piezoelectric nanoplate subjected to in-plane loading on free vibration characteristic is studied. The foundation is two-parameter viscoelastic. The nonlocal elasticity is employed in order to capture the influence of size of the plate. By utilizing Hamilton's principle as well as the first- order shear deformation theory, the governing equation and boundary conditions are achieved. Then, using Navier method the equations associated with the free vibration of a plate constructed piezoelectric material under in-plane loads are solved analytically. The presented formulation and solution procedure are validated using other papers. Also, the impacts of nonlocal parameter, mode number, constant of spring, electric potential, and geometry of the nanoplate on the vibrational frequency are examined. As this paper is the first research in which the vibration associated with piezoelectric nanoplate on the basis of FSDT and nonlocal elasticity is investigated analytically, this results can be used in future investigation in this area.

A Study on the Hysteretic Characteristics of Self-Centering Disc Spring Brace (셀프 센터링이 가능한 디스크 스프링 브레이스의 이력특성에 관한 연구)

  • Park, Byung-Tae;Shin, Dong-Hyeon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.4
    • /
    • pp.89-96
    • /
    • 2023
  • The seismic retrofits of existing structures have been focused on the control of structural responses which can be achieved by providing displacement capacity through inelastic ductile action at supplemental devices. Due to their hysteretic characteristics, it is expected to sustain damage through repeated inelastic behaviors including residual deformation which might increase repair costs. To solve such drawbacks of existing yielding devices, this study proposes a self-centering disc spring brace that sustains large axial deformation without structural damage while providing stable energy dissipation capacity. The hysteretic behaviors of suggested brace are first investigated based on the quasi-static cyclic test procedure. Experimental results present the effective self-centering behavior and an analytical model is then suggested in order to reasonably capture the flag-shaped hysteretic behavior of the disc spring brace.

Thermal Characteristic Analysis of a High-Precision Centerless Grinding Machine for Machining Ferrules (페룰 가공용 초정밀 무심 연삭기의 열 특성 해석)

  • Kim, Seo-Kil;Cho, Jae-Wan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.193-200
    • /
    • 2006
  • To perform the finish grinding process of ferrules which are widely used as fiber optic connectors, a high-precision centerless grinding machine is necessary. The high-precision centerless grinding machine is consisted of the hydrostatic GW and RW spindle systems, hydrostatic RW feeding mechanism, RW swivel mechanism, on-machine GW and RW dressers, and concrete-filled steel bed. In this study, the thermal characteristics of the high-precision centerless grinding machine such as the temperature distribution, temperature rise and thermal deformation, are estimated based on the virtual prototype of the grinding machine and the heat generation rates of heat sources related to the machine operation conditions. The reliability of the predicted results is demonstrated by the temperature characteristics measured from the physical prototype. Especially, the predicted and measured results show the fact that the high-precision centerless grinding machine has very stable thermal characteristics.

Structural Characteristic Analysis of a Centerless Grinding Machine with Concrete Bed (콘크리트 베드를 이용한 무심연삭기의 구조특성 해석)

  • 김석일;성하경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.32-36
    • /
    • 2002
  • This paper presents the structural characteristic analysis of a centerless grinding machine with concrete bed. The centerless grinding machine is composed of grinding wheel head, regulating wheel head, concrete bed, wheel dresser and so on. Especially, the concrete bed is introduced to improve the static, dynamic and thermal characteristics of the centerless grinding machine. The structural analysis model of centerless grinding machine is constructed by the finite element method, and the structural characteristics in the design stage are estimated based on the structural deformation and harmonic response under the various testing conditions related to gravity force and directional farces

  • PDF

Thermal Characteristic Analysis of a High-Precision Centerless Grinding Machine for Machining Ferrules

  • Kim, Seok-Il;Cho, Jae-Wan
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.32-37
    • /
    • 2007
  • The outer diameter finishing grinding process required for ferrules, which are widely used as fiber optic connectors, is carried out by high-precision centerless grinding machines. In this study, the thermal characteristics of such a machine, for example, the temperature distribution, temperature rise, and thermal deformation, were estimated based on a virtual prototype and the heat generation rates of heat sources related to normal operating conditions. The prototype consisted of a concrete-filled bed. hydrostatic grinding wheel (GW) and regulating wheel (RW) spindle systems, a hydrostatic RW feed mechanism, a RW swivel mechanism, and on-machine GW and RW dressers. The reliability of the predicted results was demonstrated using temperature characteristics measured from a physical prototype. The predicted and measured results indicated that this particular high-precision centerless grinding machine had very stable thermal characteristics.

Crashworthiness Characteristic Analysis of Composite Non-step Bus (복합제 초 저상 굴절버스의 충돌 특성 해석)

  • Kim, Yu-Seok;Choi, Jung-Hoon;Cho, Jin-Rae;Lee, Sang-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.756-761
    • /
    • 2007
  • This papered is concerned with the crashworthiness characteristics analysis of the non-step bus when it is crashed or roll-over analysis. Computer simulations is implemented using LS-Dyna explicit code which can effectively analysis dynamic response with the lapse of time. We construct a FEM model of the non-step bus under development according to the safety rules used in Europe for composite non-step buses. The crash energy and absorption rate are evaluated to understand crashworthiness characteristic of the composite non-step bus. Body deformation is also examined whether the survival space is secured for passengers.

  • PDF

Design and Characteristic Analysis of a Doubly-Fed 2-DOF Motor (2중여자 2자유도 모터의 설계 및 특성해석)

  • Lee, Jae-Sung;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.65-67
    • /
    • 2007
  • In this paper describes the design and characteristic analysis of a novel 2-DOF(Degree of Freedom) motor. For multi DOF actuating, several numbers of motors have been used. But the using of normal motors they connected each other in single joint, have necessary to a several type of complex power transmission devices. The 2-DOF motor can drive pan, tilt motion in only one unit and it is not necessary to use additional gears and links parts. Therefore by the using of 2-DOF spherical motor ran eliminate; combined effects of inertia, backlash, non-linear friction, and elastic deformation of gears. The validity of the analysis is confirmed by 3D finite element method.

  • PDF

The Bending minimization of Joint Shat in Cross rolling

  • Park Joon Soo;Lim Seong Joo;Yoon Duk Jae;Choi Seogou
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.107-114
    • /
    • 2003
  • Although cross rolling process has many advantages in forging a joint shaft, an automotive component of front axle unit, subsequent process is necessary to straighten its bending during forging process. In this paper the bending minimization of the joint shaft was studied to eliminate such an additional process. First of all, a characteristic diagram was used to find out factors affecting the bending of the shaft. Also design of experiments was utilized for estimating the influence of those factors. It was found that the phase angle, which is the difference in starting positions between upper and lower dies, was important to minimize the bending of joint shaft and die cooling is necessary to diminish the distribution of bending.

  • PDF

Non-Local Analysis of Forming Limits of Ductile Material Considering Damage Growth (보이드 성장을 고려한 재료의 성형한계에 대한 비 국소 해석)

  • Kim, Young-Suk;Won, Sung-Yeun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.914-922
    • /
    • 2003
  • In this paper, the strain localization of voided ductile material has been analyzed by nonlocal plasticity formulation in which the yield strength not only depends on an equivalent plastic strain measure (hardening parameter), but also on the Laplacian thereof. The gradient terms in yield criterion show an important role on modeling strain-softening phenomena of material. The influence of the mesh size on the elastic -plastic deformation behavior and the effect of the characteristic length parameter for localization prediction are also investigated. The proposed nonlocal plasticity shows that the load -strain curves converge to one curve. Results using nonlocal plasticity also exhibit the dependence of mesh size is much less sensitivity than that for a corresponding local plasticity formulation.