• Title/Summary/Keyword: deformable part assembly

Search Result 4, Processing Time 0.02 seconds

Methodology of Tolerance Analysis of Deformable Assembly (변형을 고려한 공차분석 방법론)

  • Lee, Kwang-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.6
    • /
    • pp.20-26
    • /
    • 2007
  • The new integrated CAD-CAM systems induce an increasing demand for simulation tools, which are able to simulate industrial part assembly processes by welding, gluing, riveting or bolting(more generally by fastening). Concerning fastened flexible parts, there exist no efficient computational aid on tolerance and methodology available on the field. The first part briefly presents the approach method based on the finite element method for TADA(Tolerance Analysis of Deformable Assemblies). The second part compares the results obtained by simulation using the commercial FEM code with the measurements. The principal elements of dispersion have been identified and studied on an experimental basis in order to test the robustness of the TADA model. This has enabled us to verify the model's possibilities as regards industrial constraints such as the use of incompatible meshes or the use of triangular elements and so on.

Vision-Based Part Shape and Misalignment Measurement in Cylindrical Peg-in-Hole Tasks (원형 단면 부품조립에서의 비전 기반 부품형상 및 상대오차 측정)

  • Cho Hyung-Suck;Kim Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.7
    • /
    • pp.615-620
    • /
    • 2005
  • For successful deformable part assembly, information about its deformation as well as possible misalignment between the hole and its respective mating part are essential. Such information can be mainly acquired from visual sensors. In this paper, part deformation and misalignment in deformable cylindrical peg-in-hole tasks are measured by using a visual sensing system. First, a series of experiments to measure the position of an arbitrary point are performed. Next, an algorithm to measure misalignment and part shape as part deformation are presented, and a series of experiments on them are performed. Experimental results show that the proposed algorithms and the system are effective in measuring part deformation and misalignment.

A Pyramidal Mirror System Calibration Method for Robotic Assembly

  • Kim, J.Y.;Kang, D.J.;Kim, M.S.;Ha, J.E.;Lho, T.J.;Yoon, J.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2435-2439
    • /
    • 2005
  • In case of visual sensing systems with multiple mirrors, systematic errors need to be reduced by the system calibration and the mirror position adjustment in order to enhance system measurement accuracy. In this paper, a self calibration method is presented for a visual sensing system designed to measure the three-dimensional information in deformable peg-in-hole tasks. It is composed of a CCD camera and a series of mirrors including two pyramidal mirrors. By using an image of the inner pyramidal mirror taken by the system, the error parameters of the inner pyramidal mirror could be calibrated or adjusted. Also the influence of the plane mirrors is investigated.

  • PDF

Optimum Design of a Center-pillar Model with a Simplified Side Impact Analysis (단순 측면충돌해석에 의한 센터필러의 최적설계)

  • Bae GiHyun;Song JungHan;Huh Hoon;Kim SeHo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.84-92
    • /
    • 2005
  • This paper is concerned with optimum design of a center-pillar assembly induced by the high-speed side impact of the vehicle. In order to simulate deformation behavior of the center-pillar assembly, simplified finite element model of the center-pillar and a moving deformable barrier are developed based on results of the crash analysis of a full vehicle model. In optimization of the deformation shape of the center-pillar, S-shaped deformation is targeted to guarantee reduction of the injury level of a driver dummy in the crash test. Tailor-welded blanks are adopted in the simplified center-pillar model to control the deformation shape of the center-pillar assembly. The thickness of each part which constitutes the simplified model is selected as a design parameter. The thickness of parts which have significant effect on the deformation mechanism are selected as design parameters with sensitivity analysis based on the design of experiment technique. The objective function is constructed so as to minimize the weight and lead to an S-mode deformation shape. The result shows that the simplified model can be utilized effectively for optimum design of the center-pillar members with remarkable saving of computing time.