There is limited information on the relationship between defoliation and root and rhizome development of kura clover (Trifolium ambiguum M. Bieb.). To determine the effects of defoliation severity on root and rhizome growth of young kura clover plant (seedling about 8 wk old), this research was conducted in 2002 (Experiment 1) and 2003 (Experiment 2) in a glasshouse at the University of Wisconsin-Madison. Four kura clover entries were used in this experiment: two were started from seed materials (ARS-2678 and 'Rhizo') and two were clones from mature, field-grown Rhizo kura clover plant. Three defoliation frequencies (2-, 4- and 6-wk intervals) and two defoliation intensities (complete and partial defoliation) were imposed on each of the four kura clover entries. Root, rhizome, and leaf dry matter (DM) generally increased with less frequent defoliation, however, the increase in rhizome DM was not significant between 4- or 6-wk defoliation periods. The root and leaf DM under complete defoliation (CD) were significantly lower than under partial defoliation (PD). In Exp. 1, rhizome DM was not significantly different between CD and PD; it was significantly lower under CD in Exp. 2. ARS-2678 showed excellent root development characteristics, however, its rhizome DM was significantly lower than Rhizo clones. The rhizome development from Rhizo clones was greater than that from seed materials. If maximum root and rhizome growth are expected from young kura clover plant, the intensity and frequency of defoliation should be minimized or defoliation should be avoided.
Kim, Byeong-Sam;Cho, Kyung-Chul;Yun, Bong-Ki;Jung, Seok-Kyu;Choi, Hyun-Sug;Han, Jeom-Hwa
Korean Journal of Organic Agriculture
/
v.23
no.2
/
pp.267-280
/
2015
The study was conducted to evaluate effects of time and degree of defoliation on growth of 'Wonhwang' pear (Pyrus pyrifolia Nakai) trees managing with low pesticides as well as regrowth of cuttings in vitro. Treatments included degree of defoliation (20% and 60%) with time of defoliation (Early-Aug, End-Aug, and Early-Sep); Early-Aug (20%), Early-Aug (60%), End-Aug (20%), End-Aug (60%), Early-Sep (20%), Early-Sep (60%), and No defoliation. No defoliation and Early-Sep (20%) defoliation increased growth of water sprouts and new shoots, which were improved by delayed defoliation or 20% of defoliation. Total-C, total-N, B, and free sugar contents increased in No defoliation-shoots but decreased in End-Aug (60%)-shoots. Delayed defoliation increased total-C, total-N, and free sugar in shoots, with high contents of C, K, Ca, Mg, and B observed for 20% of defoliation-trees. Fruit yield and weight or fruit length increased in No defoliation, End-Aug (20%) defoliation, and Early-Sep (20%) defoliation, but reduced in End-Aug (60%). Fruit soluble solids content reduced in defoliation in August. Time of defoliation did not affect the fruit yield and fruit quality, while degree of defoliation influenced yield and fruit weight and length. Defoliation at End-Aug (60%) mostly increased the leakage rates of the stem cuttings at $-18^{\circ}C$ and $-21^{\circ}C$ in vitro and reduced the germination rates at $-24^{\circ}C$ and $-27^{\circ}C$. Under comparison of time and degree of defoliation, the Early-Sep defoliation increased germination rates of the stem cuttings at $-27^{\circ}C$ in vitro, and 60% of defoliation decreased the germination rates compared to the 20% of defoliation.
Journal of The Korean Society of Grassland and Forage Science
/
v.15
no.1
/
pp.30-36
/
1995
Pasture composed of about 30% botanical composition of white clover (Trijolium repem L.) is desirable in its productivity and quality. To get information on maintaining its productivity in the pasture, the experiment was canied out to determine the effect of infrequent, frequent defoliation or their alternation on change of its harvest yield and growth. Individual plants of Regal, Louisiana S-1, Grasslands Huia and Aberystwyth S184 were grown in 22cm plastic pot containing a 2 : 1 : 1 soil : sand : Peat moss mixture for 27 days after transplanting 50day seedlings raised on 3cm pots, and then all their fully expanded leaves are removed. Defoliation treatments were forced every 1 (CC, frequent), 4 week (RR, infrequent) or their alternations (CR, RC) after 8 weeks from the removal. To analyze the treatment effects, plants were sampled on 0 (the removal day), 4, 8, 12 and 16 weeks after the removal and seperated to leaves, petioles, stolons and roots. Each harvest yield of infrequent defoliation (RR) was higher than that of frequent defoliation (CC). Their alternations (RC, CR), however, forced fluctuation of the yield according to defoliation interval. Fraction weights from their altemations showed intermediate ones of infrequent and Frequent defoliation whose weights did the similar result to their harvest yields. Fraction and total dry weights per plant, shoot/root ratio were changed by relative span of defoliation interval, which resulted from the weights of leaves and petioles, removed parts. Root and total dry weight per plant of Regal were greater than the other cultivm in infrequent defoliation interval regardless of continuous or alternations. Productivity of white clover in pasture, therefore, can be controlled by alternation of infrequent and frequent defoliation or reverse.
This experiment was conducted to study the effect of different defoliation methods on the same leaf characters and grain yields of perilla. Transplanting dates were from June 20, July 20, to August 20, 1989, and defoliated 30, 40, 50, 60 days after transplanting, respectively. The results obtained are summerized as follows: In the case that the fully developed leaves were defoliated, the number of total leaves were increased by more defoliations and by the later defoliation, Leaf length, width and area, fresh leaf weight, defoliated leaves per plant and grain yeidls were significantly influenced by the defoliation methods, Grain yields of the defoliation plots were lower than that of non-defoliation plot, As the above results, considering the grain yield, defoliation may be available in the case of one or two times of defoliation at the early growing stage. The profits from any type of defoliation were higher than that for grain yield only.
Kwack, Yong-Bum;Kim, Hong Lim;Chae, Won-Byoung;Lee, Jae Han;Lee, Eung Ho;Kim, Jin Gook;Lee, Yong Bok
Korean Journal of Environmental Agriculture
/
v.32
no.3
/
pp.201-206
/
2013
BACKGROUND: Kiwifruit, which was introduced to Korea in late 1970s, is a warm-temperate fruit tree, whose leaves are easily damaged by wind because of their large size. To produce high quality fruits, efficient windbreak is necessary to protect leaves until harvest. In Korea, typhoons from July onwards usually influence the production of kiwifruit. Damages from typhoons include low fruit quality in the current year and low flowering ratio the following year. This study was conducted to investigate the effect of early defoliation of kiwifruit vines from July to October on the regrowth of shoot axillary buds the current year and bud break and flowering the following year. METHODS AND RESULTS: Scions of kiwifruit cultivar 'Goldrush' were veneer grafted onto five-year-old Actinidia deliciosa rootstocks, planted in Wagner pots (13L) and grown in a rain shelter. Kiwifruit leaves in the proximity of leaf stalk were cut by lopping shears to simulate mechanical damage from typhoon since only leaf stalks were left when kiwifruit vines were damaged by typhoons. Kiwifruit vines were defoliated from July 15 to October 14 with one monthintervals and degrees of defoliation were 0, 25, 50, 75 and 100%. All experiments were conducted in the rain shelter and replicated at least five times. Defoliation in July 15 resulted in a high regrowth ratio of 20-40% regardless of degree of defoliation but that in August 16 showed only 5.8% of regrowth ratio in the no defoliation treatment; however, more than 25% of defoliation in August 16 showed 17-23% of regrowth ratio. In September 15, regrowth ratio decreased further to less than 10% in all treatments and no regrowth was observed in October 14. Percent bud break of all defoliation treatments were not significant in comparison to 64.7% in no defoliation except for 42.1% and 42.9% in 100% defoliation in July 15 and August 16, respectively. Floral shoot in the no defoliation treatment was 70.2% and defoliation of 50% or less resulted in the same or increased floral shoot ratio in July 15, August 16, and September 15; however, defoliation in October 14 showed no difference in all treatments. In flower number per floral shoot, 2-3 flowers appeared in no defoliation and only 1 flower was observed when the vines were defoliated more than 50% in July 15 and September 15. In October 14, contrary to the floral shoot ratio, flower number decreased with increased defoliation. CONCLUSION(S): Therefore, it is suggested that dormancy of 'Goldrush' axillary buds, was started in August and completed in October. The effect of defoliation on bud break of axillary buds the following year was insignificant, except for 100% defoliation in July 15 and August 16. From July 15 to September 15, floral bud ratio was significantly reduced when more than 50% of leaves were defoliated compared to no defoliation. Also, the number of flowers per flower-bearing shoot the following year decreased by less than 50% when compared to no defoliation, and this decrease was more prominent in September 15 than July 15 and August 16.
The purpose of this study was to investigate the effects of defoliation treatment on the growth and yield of strawberries. There was a remarkable growth in the above-ground part and root of untreated strawberry plants possibly due to higher amount of photosynthesis, while overall plant growth was suppressed as the level of defoliation treatment increased. In both the "Seolhyang" and "Maehyang" cultivars examined, defoliation treatment resulted in small fruits and a low number of fruits per plant. Notably, 50% defoliation significantly reduced the number of fruits per plant to 8.2, compared to 13.8 in untreated plants. Defoliation treatment also negatively influenced the fruit quality including color, sugar content, and solid-acid rate. However, no significant changes in fruit firmness was observed in either cultivar. Therefore, retaining enough leaves without defoliation treatment can be important to increasing fruit yield, producing high quality fruits and saving labor required for defoliation.
Poor establishment of white dover (Trifolium repens L.) into grass-dominant pastures has been limited its availability. The experiment was done to clarify the effects of timing of initial defoliation, defoliation frequency on the regrowth and nodule formation of the clover cultivars during 28-day regrowing period. Individual plants of cv. Regal, Louisiana S-1 (La. S-1), Grasslands Huia (Huia) and Aberystwyth S184 (S184) were grown in containers until grown to unifoliolate, 1, 2, 4, or 8 trifoliolate stage, and then clipped to 1cm in height every 7 or 28 day for 28 days. To measure the effects, plants were sampled immediately after final harvest, and 1, 3, 7, 14 and 28 days after the harvest. Shoot, root dry weight and biomass were reduced with earlier, more frequent defoliation or shorter regrowing period. In frequent defoliation shoot dry weight and biomass were increased with delayed initial defoliation while in less frequent defoliation steeply done when initial defoliation was delayed to 4 trifoliolate stage. Shoot /Root ratio inclined with more frequent defoliation or lengthened regrowing period, and was greater in initial defoliation of unifoliolate to 2 trifoliolate than the others. Although nodules no. per plant declined with earlier or more frequent defoliation, the effect disappeared to some extent after 14-day regrowth. In comparison with the others, Regal had the highest shoot. dry weight and biomass to 2 trifoliolate stage while S184 did the most nodules regardless of defoliation timing. On 7-day after last defoliation nodule formation of Regal, Huia and S184 but on 28-day after last defoliation that of La. S-1, Huia and S184 was positively correlated to shoot and root dry weights upto 2 trifoliolate stage. On the former day, however, that was negatively correlated to Shoot /Root ratio upto 1 trifoliolate stage although on the latter day it was not, meaning that in addition to more frequent defoliation earlier defoliation was harmful in nodule formation of white clover.
This study was conducted to evaluate the influence of early defoliation on photosynthesis and carbohydrate reserves when the source leaves of 'Fuji'/M9 apple (Malus domestica Borkh.) trees were removed during the growing period. Bud regrowth rates of 80%, 50% defoliation and non-defoliation treatments were significantly different 82.7%, 45.9% and 2.1% respectively at 30 days after treatment. In all treatments, sucrose and starch concentrations in remaining leaves decreased non-significantly during the 14-day period. No significant changes were observed for total soluble carbohydrates in non-defoliation and 50% defoliation. However, in 80% defoliated treatments, concentrations of sorbitol and total soluble carbohydrates in remaining leaves declined steadily during the 14-day period. It is thought that high sink strength increases the requirements of carbohydrate from remaining leaves more than non-defoliated. The concentrations of starch in the roots tend to decrease non-significantly as percentage of defoliation increased. Photosynthesis of remaining leaves was monitored during the 14-day period after partial defoliation treatments. Net photosynthetic rates (Pn) and stomatal conductance were significantly enhanced in the 80% defoliation. The observed photosynthetic enhancement following partial defoliation may have been due to the enhancement of osmotic potential in leaves. These results were estimated that increasing of photosynthetic rate in the partial defoliation is due to the sink carbohydrate requirements for the current year's secondary growth of buds.
BACKGROUND: The fruit quality and flowering characteristics of Kiwifruit (A. deliciosa cv. Hayward) in the following year is known to be affected by the extent and timing of defoliation of the current year. In korea, the production of kiwi, which is a perennial, straggling deciduous warm-temperate fruit, is often restricted by wind damage due to typhoons resulting to defoliation at the middle season of its growing period. In this paper, we report the effect of the different timing of defoliation and severities at the current season to the kiwifruit quality. METHODS AND RESULTS: Twenty seven-year-old 'Hayward' trees grown under polyethylene film rain-shelter were defoliated in different days from August to September at seven day-intervals. In each day, 0, 25, 50, 75 and 100% of leaves were removed from the trees. Fruits from each treatment were classified into four floating types (L: lying in bottom, S: standing on bottom, F: floating and SF: floating at the surface of water) by submerging them into tap water. Defoliation of kiwifruit trees in August and September caused air holes in locules of inner pericarp. Increased number of air hole in locules of a fruit was observed in floating types F and SF, and most of the air holes were located in stem end. The defoliation of trees in August significantly reduced the ratio of L-floating type fruits, which have the least number of locule air holes. The extent of defoliation also affected the distribution of the four types, the more leaves removed, the less L-floating type fruits harvested. The weight of fruits from trees defoliated in August was lower than that of fruits from September. Soluble solids content decreased as the number of locule air holes increased. Negative correlations were observed between the extent of defoliation and the weight and soluble solids content of fruits. CONCLUSION: Early defoliation effect on kiwifruit locule air hole occurrence and fruit quality were more severe in August than in September. And also if the defoliation severity is over 25%, severe fruit quality reduction expected to happen due to increase of fruit locule air hole in the inner pericarp.
Kim, Byeong-Sam;Cho, Kyung-Chul;Ma, Kyung-Chul;Yun, Bong-Ki;Jung, Seok-Kyu;Han, Jeom-Hwa;Choi, Hyun-Sug
Korean Journal of Organic Agriculture
/
v.23
no.3
/
pp.469-480
/
2015
The study was conducted on the effects of time of defoliation on fruit quality of pear (Pyrus pyrifolia Nakai) trees, managing with low-pesticides, and regrowth of stem cuttings in vitro. Treatments included for 40% of uniform defoliation at early-August, end-August, and early-September, as well as control (no defoliation). Defoliation at early-September and control increased growth of water sprouts as well as concentrations of carbohydrates, total nitrogen, and free sugar in one-year old shoots. Defoliation at early-September and control increased fruit yield and mean fruit weight, with high soluble solids content and fruit surface color of $a^*$ observed for both defoliation at end-August and early-September. Defoliation at early-August increased rates of electrolyte leakage in stem cuttings at $-18^{\circ}C$ in vitro. There were no significantly different for germination rates of the cuttings between the treatments at -18 and $-21^{\circ}C$ in vitro, with the highest germination of the cuttings observed for defoliation at early-September and control at $-27^{\circ}C$. Therefore, orchard management should be performed to be minimized for defoliation of the spur leaves until end-August, causing from precipitation and pests.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.