• Title/Summary/Keyword: deflection-based damage detection

Search Result 11, Processing Time 0.021 seconds

Optimal sensor placement for bridge damage detection using deflection influence line

  • Liu, Chengyin;Teng, Jun;Peng, Zhen
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.169-181
    • /
    • 2020
  • Sensor placement is a crucial aspect of bridge health monitoring (BHM) dedicated to accurately estimate and locate structural damages. In addressing this goal, a sensor placement framework based on the deflection influence line (DIL) analysis is here proposed, for the optimal design of damage detection-oriented BHM system. In order to improve damage detection accuracy, we explore the change of global stiffness matrix, damage coefficient matrix and DIL vector caused by structural damage, and thus develop a novel sensor placement framework based on the Fisher information matrix. Our approach seeks to determine the contribution of each sensing node to damage detection, and adopts a distance correction coefficient to eliminate the information redundancy among sensors. The proposed damage detection-oriented optimal sensor placement (OSP) method is verified by two examples: (1) a numerically simulated three-span continuous beam, and (2) the Pinghu bridge which has existing real damage conditions. These two examples verify the performance of the distance corrected damage sensitivity of influence line (DSIL) method in significantly higher contribution to damage detection and lower information redundancy, and demonstrate the proposed OSP framework can be potentially employed in BHM practices.

Damage detection for truss or frame structures using an axial strain flexibility

  • Yan, Guirong;Duan, Zhongdong;Ou, Jinping
    • Smart Structures and Systems
    • /
    • v.5 no.3
    • /
    • pp.291-316
    • /
    • 2009
  • Damage detection using structural classical deflection flexibility has received considerable attention due to the unique features of the flexibility in the last two decades. However, for relatively complex structures, most methods based on classical deflection flexibility fail to locate damage sites to the exact members. In this study, for structures whose members are dominated by axial forces, such as truss structures, a more feasible flexibility for damage detection is proposed, which is called the Axial Strain (AS) flexibility. It is synthesized from measured modal frequencies and axial strain mode shapes which are expressed in terms of translational mode shapes. A damage indicator based on AS flexibility is proposed. In addition, how to integrate the AS flexibility into the Damage Location Vector (DLV) approach (Bernal and Gunes 2004) to improve its performance of damage localization is presented. The methods based on AS flexbility localize multiple damages to the exact members and they are suitable for the cases where the baseline data of the intact structure is not available. The proposed methods are demonstrated by numerical simulations of a 14-bay planar truss and a five-story steel frame and experiments on a five-story steel frame.

Damage detection in beam-like structures using deflections obtained by modal flexibility matrices

  • Koo, Ki-Young;Lee, Jong-Jae;Yun, Chung-Bang;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.605-628
    • /
    • 2008
  • In bridge structures, damage may induce an additional deflection which may naturally contain essential information about the damage. However, inverse mapping from the damage-induced deflection to the actual damage location and severity is generally complex, particularly for statically indeterminate systems. In this paper, a new load concept, called the positive-bending-inspection-load (PBIL) is proposed to construct a simple inverse mapping from the damage-induced deflection to the actual damage location. A PBIL for an inspection region is defined as a load or a system of loads which guarantees the bending moment to be positive in the inspection region. From the theoretical investigations, it was proven that the damage-induced chord-wise deflection (DI-CD) has the maximum value with the abrupt change in its slope at the damage location under a PBIL. Hence, a novel damage localization method is proposed based on the DI-CD under a PBIL. The procedure may be summarized as: (1) identification of the modal flexibility matrices from acceleration measurements, (2) design for a PBIL for an inspection region of interest in a structure, (3) calculation of the chord-wise deflections for the PBIL using the modal flexibility matrices, and (4) damage localization by finding the location with the maximum DI-CD with the abrupt change in its slope within the inspection region. Procedures from (2)-(4) can be repeated for several inspection regions to cover the whole structure complementarily. Numerical verification studies were carried out on a simply supported beam and a three-span continuous beam model. Experimental verification study was also carried out on a two-span continuous beam structure with a steel box-girder. It was found that the proposed method can identify the damage existence and damage location for small damage cases with narrow cuts at the bottom flange.

Novel approach for early damage detection on rotor blades of wind energy converters

  • Zerbst, Stephan;Tsiapoki, Stavroula;Rolfes, Raimund
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.419-444
    • /
    • 2014
  • Within this paper a new approach for early damage detection in rotor blades of wind energy converters is presented, which is shown to have a more sensitive reaction to damage than eigenfrequency-based methods. The new approach is based on the extension of Gasch's proportionality method, according to which maximum oscillation velocity and maximum stress are proportional by a factor, which describes the dynamic behavior of the structure. A change in the proportionality factor can be used as damage indicator. In addition, a novel deflection sensor was developed, which was specifically designed for use in wind turbine rotor blades. This deflection sensor was used during the experimental tests conducted for the measurement of the blade deflection. The method was applied on numerical models for different damage cases and damage extents. Additionally, the method and the sensing concept were applied on a real 50.8 m blade during a fatigue test in the edgewise direction. During the test, a damage of 1.5 m length was induced on the upper trailing edge bondline. Both the initial damage and the increase of its length were successfully detected by the decrease of the proportionality factor. This decrease coincided significantly with the decrease of the factor calculated from the numerical analyses.

Wavelet-based damage detection method for a beam-type structure carrying moving mass

  • Gokdag, Hakan
    • Structural Engineering and Mechanics
    • /
    • v.38 no.1
    • /
    • pp.81-97
    • /
    • 2011
  • In this research, the wavelet transform is used to analyze time response of a cracked beam carrying moving mass for damage detection. In this respect, a new damage detection method based on the combined use of continuous and discrete wavelet transforms is proposed. It is shown that this method is more capable in making damage signature evident than the traditional two approaches based on direct investigation of the wavelet coefficients of structural response. By the proposed method, it is concluded that strain data outperforms displacement data at the same point in revealing damage signature. In addition, influence of moving mass-induced terms such as gravitational, Coriolis, centrifuge forces, and pure inertia force along the deflection direction to damage detection is investigated on a sample case. From this analysis it is concluded that centrifuge force has the most influence on making both displacement and strain data damage-sensitive. The Coriolis effect is the second to improve the damage-sensitivity of data. However, its impact is considerably less than the former. The rest, on the other hand, are observed to be insufficient alone.

Baseline-free damage detection method for beam structures based on an actual influence line

  • Wang, Ning-Bo;Ren, Wei-Xin;Huang, Tian-Li
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.475-490
    • /
    • 2019
  • The detection of structural damage without a priori information on the healthy state is challenging. In order to address the issue, the study presents a baseline-free approach to detect damage in beam structures based on an actual influence line. In particular, a multi-segment function-fitting calculation is developed to extract the actual deflection influence line (DIL) of a damaged beam from bridge responses due to a passing vehicle. An intact basis function based on the measurement position is introduced. The damage index is defined as the difference between the actual DIL and a constructed function related to the intact basis, and the damage location is indicated based on the local peak value of the damage index curve. The damage basis function is formulated by using the detected damage location. Based on the intact and damage basis functions, damage severity is quantified by fitting the actual DIL using the least-square calculation. Both numerical and experimental examples are provided to investigate the feasibility of the proposed method. The results indicate that the present baseline-free approach is effective in detecting the damage of beam structures.

Damage detection for beam structures using an angle-between-string-and-horizon flexibility matrix

  • Yan, Guirong;Duan, Zhongdong;Ou, Jinping
    • Structural Engineering and Mechanics
    • /
    • v.36 no.5
    • /
    • pp.643-667
    • /
    • 2010
  • The classical flexibility difference method detects damage by observing the difference of conventional deflection flexibility matrices between pre- and post-damaged states of a structure. This method is not able to identify multiple damage scenarios, and its criteria to identify damage depend upon the boundary conditions of structures. The key point behind the inability and dependence is revealed in this study. A more feasible flexibility for damage detection, the Angle-between-String-and-Horizon (ASH) flexibility, is proposed. The physical meaning of the new flexibility is given, and synthesis of the new flexibility matrix by modal frequencies and translational mode shapes is formulated. The damage indicators are extracted from the difference of ASH flexibility matrices between the pre- and post-damaged structures. One feature of the ASH flexibility is that the components in the ASH flexibility matrix are associated with elements instead of Nodes or DOFs. Therefore, the damage indicators based on the ASH flexibility are mapped to structural elements directly, and thus they can pinpoint the damaged elements, which is appealing to damage detection for complex structures. In addition, the change in the ASH flexibility caused by damage is not affected by boundary conditions, which simplifies the criteria to identify damage. Moreover, the proposed method can determine relatively the damage severity. Because the proposed damage indicator of an element mainly reflects the deflection change within the element itself, which significantly reduces the influence of the damage in one element on the damage indicators of other damaged elements, the proposed method can identify multiple damage locations. The viability of the proposed approach has been demonstrated by numerical examples and experimental tests on a cantilever beam and a simply supported beam.

Experimental validation of a multi-level damage localization technique with distributed computation

  • Yan, Guirong;Guo, Weijun;Dyke, Shirley J.;Hackmann, Gregory;Lu, Chenyang
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.561-578
    • /
    • 2010
  • This study proposes a multi-level damage localization strategy to achieve an effective damage detection system for civil infrastructure systems based on wireless sensors. The proposed system is designed for use of distributed computation in a wireless sensor network (WSN). Modal identification is achieved using the frequency-domain decomposition (FDD) method and the peak-picking technique. The ASH (angle-between-string-and-horizon) and AS (axial strain) flexibility-based methods are employed for identifying and localizing damage. Fundamentally, the multi-level damage localization strategy does not activate all of the sensor nodes in the network at once. Instead, relatively few sensors are used to perform coarse-grained damage localization; if damage is detected, only those sensors in the potentially damaged regions are incrementally added to the network to perform finer-grained damage localization. In this way, many nodes are able to remain asleep for part or all of the multi-level interrogations, and thus the total energy cost is reduced considerably. In addition, a novel distributed computing strategy is also proposed to reduce the energy consumed in a sensor node, which distributes modal identification and damage detection tasks across a WSN and only allows small amount of useful intermediate results to be transmitted wirelessly. Computations are first performed on each leaf node independently, and the aggregated information is transmitted to one cluster head in each cluster. A second stage of computations are performed on each cluster head, and the identified operational deflection shapes and natural frequencies are transmitted to the base station of the WSN. The damage indicators are extracted at the base station. The proposed strategy yields a WSN-based SHM system which can effectively and automatically identify and localize damage, and is efficient in energy usage. The proposed strategy is validated using two illustrative numerical simulations and experimental validation is performed using a cantilevered beam.

A systematic method from influence line identification to damage detection: Application to RC bridges

  • Chen, Zhiwei;Yang, Weibiao;Li, Jun;Cheng, Qifeng;Cai, Qinlin
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.563-572
    • /
    • 2017
  • Ordinary reinforced concrete (RC) and prestressed concrete bridges are two popular and typical types of short- and medium-span bridges that accounts for the vast majority of all existing bridges. The cost of maintaining, repairing or replacing degraded existing RC bridges is immense. Detecting the abnormality of RC bridges at an early stage and taking the protective measures in advance are effective ways to improve maintenance practices and reduce the maintenance cost. This study proposes a systematic method from influence line (IL) identification to damage detection with applications to RC bridges. An IL identification method which integrates the cubic B-spline function with Tikhonov regularization is first proposed based on the vehicle information and the corresponding moving vehicle induced bridge response time history. Subsequently, IL change is defined as a damage index for bridge damage detection, and information fusion technique that synthesizes ILs of multiple locations/sensors is used to improve the efficiency and accuracy of damage localization. Finally, the feasibility of the proposed systematic method is verified through experimental tests on a three-span continuous RC beam. The comparison suggests that the identified ILs can well match with the baseline ILs, and it demonstrates that the proposed IL identification method has a high accuracy and a great potential in engineering applications. Results in this case indicate that deflection ILs are superior than strain ILs for damage detection of RC beams, and the performance of damage localization can be significantly improved with the information fusion of multiple ILs.

Induction Motor Bearing Damage Detection Using Stator Current Monitoring (고정자전류 모니터링에 의한 유도전동기 베어링고장 검출에 관한 연구)

  • Yoon, Chung-Sup;Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.6
    • /
    • pp.36-45
    • /
    • 2005
  • This paper addresses the application of motor current spectral analysis for the detection of rolling-element bearing damage in induction machines. We set the experimental test bed. They is composed of the normal condition bearing system, the abnormal rolling-element bearing system of 2 type induction motors with shaft deflection system by external force and a hole drilled through the outer race of the shaft end bearing of the four pole test motor. We have developed the embedded distributed fault tolerant and fault diagnosis system for industrial motor. These mechanisms are based on two 32-bit DSPs and each TMS320F2407 DSP module is checking stator current The effects on the stator current spectrum are described and related frequencies are also determined. This is an important result in the formulation of a fault detection scheme that monitors the stator currents. We utilized the FFT(Fast Fourier Transform), Wavelet analysis and averaging signal pattern by inner product tool to analyze stator current components. Especially, the analyzed results by inner product clearly illustrate that the stator signature analysis can be used to identify the presence of a bearing fault.