• Title/Summary/Keyword: deflection limit

Search Result 159, Processing Time 0.023 seconds

Collapse Analysis of Simplified Vehicle Structure Models using Finite Element Limit Analysis (유한요소 극한해석을 이용한 단순체체모델의 붕괴거동해석)

  • Kim, H. S.;Huh, H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.1-9
    • /
    • 1998
  • The analysis concerns collapse behavior of framed vehicle models with the change of design parameters at the initial stage of conceptual design. Collapse analysis of a vehicle model with framed structures has been carried out using finite element limit analysis. The analysis makes sequential changes of design parameters from an initial model with frames of uniform section so as to stage then weak parts. As a result of those design changes, the collapse load of a model has been increased and the deflection toward a passenger room has been reduced. The results demonstrate the versatility of finite element limit analysis as a tool that confirms the safety of vehicle models.

  • PDF

Dynamic Responses Characteristics of Steel Box Railway Bridges Subjected to Train Loading (열차주행에 따른 강박스 철도교의 동적응답특성)

  • Park, Sun-Joon;Kang, Sung-Hoo;Jo, Eun-Pyung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.772-778
    • /
    • 2009
  • By rising the interests of the railroad, It has been required the research about railroad structure. And since 2000, the study about railway bridges caused by steel box railway bridges has been only 0.2%. So I was hard to find out about steel box railway bridges. In this study, I evaluate and analyze 4 types(KTX, Saemaeul, Mugunghwa, Freight) of dynamic caused by train loading, natural frequency and damping ratio, verticality deflection and verticality acceleration, end slope deflection, impact factor for dynamic characteristics analysis. natural frequency was measured 2.45Hz~3.34Hz and damping ratio revealed for 1.26~2.84%. Maximum verticality deflection(4.86mm) was sufficiently satisfied the design criteria(30.1mm), but in the case of verticality acceleration's respond, design criteria BRDM(Bridge Design Manual) & CTRL presentation derive rail limit value 0.35g be more than value 6 time recorded, maximum was measured 0.49g in 3 kinds of train(KTX, Saemaeul, Mugunghwa), except for Freight. Survey impact factor of Experiment bridge was 0.20 which is measured when the KTX(15:04) was driving. impact factor is enough contended with design criteria 0.29 which is presented in domestic railway design criteria and thoroughly guarantee the dynamic stability.

  • PDF

Dynamic Responses Characteristics of Steel Box Railway Bridges Subjected to Train Loading (열차주행에 따른 강박스 철도교의 동적응답특성)

  • Park, Sun-Joon;Kang, Sung-Hoo;Jo, Eun-Pyung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.12
    • /
    • pp.1306-1314
    • /
    • 2009
  • By rising the interests of the railroad, It has been required the research about railroad structure. And since 2000, the study about railway bridges caused by steel box railway bridges has been only 0.2 %. So I was hard to find out about steel box railway bridges. In this study, I evaluate and analyze 4 types(KTX, Saemaeul, Mugunghwa, Freight) of dynamic caused by train loading, natural frequency and damping ratio, verticality deflection and verticality acceleration, end slope deflection, impact factor for dynamic characteristics analysis. natural frequency was measured 2.45 Hz~3.34 Hz and damping ratio revealed for 1.26~2.84 %. Maximum verticality deflection(4.86 mm) was sufficiently satisfied the design criteria(30.1 mm), but in the case of verticality acceleration's respond, design criteria BRDM(bridge design manual) & CTRL presentation derive rail limit value 0.35 g be more than value 6 time recorded, maximum was measured 0.49 g in 3 kinds of train(KTX, Saemaeul, Mugunghwa), except for Freight. Survey impact factor of Experiment bridge was 0.20 which is measured when the KTX(15:04) was driving. impact factor is enough contended with design criteria 0.29 which is presented in domestic railway design criteria and thoroughly guarantee the dynamic stability.

Performance of non-prismatic simply supported prestressed concrete beams

  • Raju, P. Markandeya;Rajsekhar, K.;Sandeep, T. Raghuram
    • Structural Engineering and Mechanics
    • /
    • v.52 no.4
    • /
    • pp.723-738
    • /
    • 2014
  • Prestressing is the most commonly employed technique in bridges and long span beams in commercial buildings as prestressing results in slender section with higher load carrying capacities. This work is an attempt to study the performance of a minimum weight prestressed concrete beam adopting a non-prismatic section so that there will be a reduction in the volume of concrete which in turn reduces the self-weight of the structure. The effect of adopting a non-prismatic section on parameters like prestressing force, area of prestressing steel, bending stresses, shear stresses and percentage loss of prestress are established theoretically. The analysis of non-prismatic prestressed beams is based on the assumption of pure bending theory. Equations are derived for dead load bending moment, eccentricity, and depth at any required section. Based on these equations an algorithm is developed which does the stress checks for the given section for every 500 mm interval of the span. Limit state method is used for the design of beam and finite difference method is used for finding out the deflection of a non-prismatic beam. All the parameters of nonprismatic prestressed concrete beams are compared with that of the rectangular prestressed concrete members and observed that minimum weight design and economical design are not same. Minimum weight design results in the increase in required area of prestressing steel.

A Study on the Application Method of Steinberg Fatigue Limit Equation for Electronic Part Life Assessment of Fighter Aircraft Radar (전투기 레이다용 전자부품 수명평가를 위한 Steinberg 피로한계식 적용방안 연구)

  • Kim, Deokjoo;Hah, Seung Ryong;Kang, Minsung;Heo, Jaehun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.319-327
    • /
    • 2020
  • In this study a methodology to evaluate fatigue life of the electronic parts for the fighter radar unit under random vibration loading is presented. To do this, one parameter for the 3-σ RMS quation of Steinberg fatigue model is modified to come up with a printed circuit board(PCB) with multiple electronic parts, while fundamental frequency and dynamic deflection of the PCB are calculated from a MATLAB based finite element computer code. For the RIFA structure selected in this study, the 3-σ RMS fatigue limit displacement is reduced to 0.741 times as much as the Steinberg model. This investigation allows to assess the life of multiple electronic parts mounted on the PCB with reinforced metal cover/body showing non-sinusoidal deflection patterns.

Crack effect on the elastic buckling behavior of axially and eccentrically loaded columns

  • Zhou, L.;Huang, Y.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.169-184
    • /
    • 2006
  • A close form solution of the maximum deflection for cracked columns with rectangular cross-sections was developed and thus the elastic buckling behavior and ultimate bearing capacity were studied analytically. First, taking into account the effect of the crack in the potential energy of elastic systems, a trigonometric series solution for the elastic deflection equation of an arbitrary crack position was derived by use of the Rayleigh-Ritz energy method and an analytical expression of the maximum deflection was obtained. By comparison with the rotational spring model (Okamura et al. 1969) and the equivalent stiffness method (Sinha et al. 2002), the advantages of the present solution are that there are few assumed conditions and the effect of axial compression on crack closure was considered. Second, based on the above solutions, the equilibrium paths of the elastic buckling were analytically described for cracked columns subjected to both axial and eccentric compressive load. Finally, as examples, the influence of crack depth, load eccentricity and column slenderness on the elastic buckling behavior was investigated in the case of a rectangular column with a single-edge crack. The relationship of the load capacity of the column with respect to crack depth and eccentricity or slenderness was also illustrated. The analytical and numerical results from the examples show that there are three kinds of collapse mechanisms for the various states of cracking, eccentricity and slenderness. These are the bifurcation for axial compression, the limit point instability for the condition of the deeper crack and lighter eccentricity and the fracture for higher eccentricity. As a result, the conception of critical transition eccentricity $(e/h)_c$, from limit-point buckling to fracture failure, was proposed and the critical values of $(e/h)_c$ were numerically determined for various eccentricities, crack depths and slenderness.

A STUDY ON THE CHANGES OF THE ELASTIC PROPERTIES TN LOOPED WIRES BY VARIABLE FACTORS (변환요소에 따른 LOOPED WIRE의 탄성 변화에 관한 연구)

  • Na, Yong-In;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.25 no.3 s.50
    • /
    • pp.263-271
    • /
    • 1995
  • The purpose of this study nab to evlauate and compare the effect of the variable factors of wire on the elastic properties of looped rectangular wire. Five variable factors were presented-material(Hi-T, blue Elgiloy), wire size(.016'$\;\times\;$.022', .018'$\;\times\;$.025'), loop length(15mm, 20mm), loop configuration(open loop, closed loop), gabling (non-gable, gable). So, the total 256 specimens were divided into 32 groups, and each of those nab pulled on Instron testing machine. The load-deflection curve of each wire obtained, from which force, range in elastic limit, and stiffness were computed and analyzed statistically. The results were obtained as follows : 1. All of the variable factors - wire material, size, loop length loop configuration, and gabling - took a significant effect on load-deflection rate of looped wire. 2. The force at elastic limit was the smallest in the group of Hi-T, .016'$\;\times\;$.022', 20mm loop length, open loop, non-gable, and the largest in the group of blue Elgiloy, .018'$\;\times\;$.025', 15mm loop length, closed loop, non-gable. 3. The range at elastic limit was the smallest in the group of Hi-T, .018'$\;\times\;$.025', 15mm loop length, open loop, non-gable, and the largest in the group of HI-T, .016'$\;\times\;$.022', 20mm loop length, closed loop, gable. 4. Loop configuration and loop length were the most effective factors on the elastic properties of looped wires, and gabling was the least effective.

  • PDF

Probabilistic computation of the structural performance of moment resisting steel frames

  • Ceribasi, Seyit
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.369-382
    • /
    • 2017
  • This study investigates the reliability of the performance levels of moment resisting steel frames subjected to lateral loads such as wind and earthquake. The reliability assessment has been performed with respect to three performance levels: serviceability, damageability, and ultimate limit states. A four-story moment resisting frame is used as a typical example. In the reliability assessment the uncertainties in the loadings and in the capacity of the frame have been considered. The wind and earthquake loads are assumed to have lognormal distribution, and the frame resistance is assumed to have a normal distribution. In order to obtain an appropriate limit state function a linear relation between the loading and the deflection is formed. For the reliability analysis an algorithm has been developed for determination of limit state functions and iterations of the first order reliability method (FORM) procedure. By the method presented herein the multivariable analysis of a complicated reliability problem is reduced to an S-R problem. The procedure for iterations has been tested by a known problem for the purpose of avoiding convergence problems. The reliability indices for many cases have been obtained and also the effects of the coefficient of variation of load and resistance have been investigated.

Analysis of Static Lateral Stability Using Mathematical Simulations for 3-Axis Tractor-Baler System

  • Hong, Sungha;Lee, Kyouseung;Kang, Daein;Park, Wonyeop
    • Journal of Biosystems Engineering
    • /
    • v.42 no.2
    • /
    • pp.86-97
    • /
    • 2017
  • Purpose: This study aims to evaluate the applicability of a tractor-baler system equipped with a newly developed round baler by conducting stability analyses via static-state mathematical simulations and verification experiments for the tractor equipped with a loader. Methods: The centers of gravity of the tractor and baler were calculated to analyze the transverse overturning of the system. This overturning of the system was analyzed by applying mathematical equations presented in previous research and comparing the results with those obtained by the newly developed mathematical simulation. For the case of the tractor equipped with a loader, mathematical simulation results and experimental values from verification experiments were compared and verified. Results: The center of gravity of the system became lower after the baler was attached to the tractor and the angle of transverse overturning of the system steadily increased or decreased as the deflection angle increased or decreased between $0^{\circ}$ and $180^{\circ}$ on the same gradient. In the results of the simulations performed by applying mathematical equations from previous research, right transverse overturning occurred when the tilt angle was at least $19.5^{\circ}$ and the range of deflection angles was from $82^{\circ}$ to $262^{\circ}$ in counter clockwise. Additionally, left transverse overturning also occurred at tilt angles of at least $19.5^{\circ}$ and the range of deflection angles was from $259^{\circ}$ to $79^{\circ}$ in counter clockwise. Under the $0^{\circ}$ deflection angle condition, in simulations of the tractor equipped with a loader, transverse overturning occurred at $17.9^{\circ}$, which is a 2.3% change from the results of the verification experiment ($17.5^{\circ}$). The simulations applied the center of gravity and the correlations between the tilt angles, formed by individual wheel ground contact points excluding wheel radius and hinge point height, which cannot be easily measured, for the convenient use of mathematical equations. The results indicated that both left and right transverse overturning occurred at $19.5^{\circ}$. Conclusions: The transverse overturning stability evaluation of the system, conducted via mathematical equation modeling, was stable enough to replace the mathematical equations proposed by previous researchers. The verification experiments and their results indicated that the system is workable at $12^{\circ}$, which is the tolerance limit for agricultural machines on the sloped lands in South Korea, and $15^{\circ}$, which is the tolerance limit for agricultural machines on the sloped grasslands of hay in Japan.

Deflection Limits based on the Vibration Serviceability of Guideway Structures Considering Maglev Train-Guideway Interaction (자기부상열차와 가이드웨이 상호작용을 고려한 가이드웨이 구조물의 진동사용성 처짐 한계)

  • Lee, Jin Ho;Kim, Sung Il
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.1
    • /
    • pp.111-119
    • /
    • 2017
  • In this study, deflection limits based on the vibration serviceability of guideway structures are proposed considering maglev train-guideway interaction. Equations of motion are derived for a simplified maglev railway. Feedback constants for the control of the electromagnetic force for levitation are optimized in order to minimize the airgap fluctuations. Deflection limits for a guideway are calculated for various operating speeds of a maglev train, span lengths of a guideway, and natural frequencies and damping ratios of the second suspension in order to satisfy the serviceability criteria for airgaps and for the vertical acceleration of a cabin. From the analysis results, proposed are requirements for the second suspension of maglev trains and deflection limits for guideway structures.