• 제목/요약/키워드: deflection

검색결과 3,775건 처리시간 0.038초

Crack location in beams by data fusion of fractal dimension features of laser-measured operating deflection shapes

  • Bai, R.B.;Song, X.G.;Radzienski, M.;Cao, M.S.;Ostachowicz, W.;Wang, S.S.
    • Smart Structures and Systems
    • /
    • 제13권6호
    • /
    • pp.975-991
    • /
    • 2014
  • The objective of this study is to develop a reliable method for locating cracks in a beam using data fusion of fractal dimension features of operating deflection shapes. The Katz's fractal dimension curve of an operating deflection shape is used as a basic feature of damage. Like most available damage features, the Katz's fractal dimension curve has a notable limitation in characterizing damage: it is unresponsive to damage near the nodes of structural deformation responses, e.g., operating deflection shapes. To address this limitation, data fusion of Katz's fractal dimension curves of various operating deflection shapes is used to create a sophisticated fractal damage feature, the 'overall Katz's fractal dimension curve'. This overall Katz's fractal dimension curve has the distinctive capability of overcoming the nodal effect of operating deflection shapes so that it maximizes responsiveness to damage and reliability of damage localization. The method is applied to the detection of damage in numerical and experimental cases of cantilever beams with single/multiple cracks, with high-resolution operating deflection shapes acquired by a scanning laser vibrometer. Results show that the overall Katz's fractal dimension curve can locate single/multiple cracks in beams with significantly improved accuracy and reliability in comparison to the existing method. Data fusion of fractal dimension features of operating deflection shapes provides a viable strategy for identifying damage in beam-type structures, with robustness against node effects.

원자로내 핵연료봉 제거 로봇 구조물의 휨변형구조해석 (Structural Deflection Analysis of Robot Manipulator for Removing Nuclear Fuel Rod in Nuclear Reactor Vessel)

  • 권영주;김재희
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.203-209
    • /
    • 1999
  • In this study, the structural deflection analysis of robot manipulator for removing nuclear fuel rod from nuclear reactor vessel is performed by using general purpose finite element code (ANSYS). The structural deflection analysis results reported in this study is very required for the accurate design of robot system. The structural deflection analysis for the manipulator's structural status at which the gripper grasps and draws up the nuclear fuel rod is done, For this beginning structural status of robot manipulator's removing motion, the reaction forces at each joint have static maximum values as reported in the reference(6), and so these forces may cause the maximum deflection of robot structure. The structural deflection analysis is performed for selected four working cases of the proposed structural model and results on deformation, stress for the manipulator's solid body and the deflection at the end of robot manipulator's gripper are calculated. And further, the same analysis is performed for the slenderer manipulator with cross section reduced by one-fifth of each side length of proposed model. The analysis is performed not only for the nuclear fuel rod with weight load of 300kg but also for nuclear fuel rods with weight loads of 100kg, 200kg, 400kg and 500kg. The static structural deflection analysis results show that the deflection value increases as the load increases and the largest value (corresponding to the weight load of 500kg in case 1) is much smaller than the gap distance between nuclear fuel rods. but the largest value for the slenderer manipulator is almost as large as the gap distance, Hence, conclusively, the proposed manipulator's structural model is acceptably safe for mechanical design of robot system.

  • PDF

FRP 보강 콘크리트 보의 장기처짐에 관한 실험연구 (An Experimental Study on the Long-Term Deflection of Concrete Beams with GFRP Rebars)

  • 박지선;유영준;박영환;김긍환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.325-328
    • /
    • 2008
  • FRP 보강근을 이용한 콘크리트 부재는 균열이 발생하면 강성이 상대적으로 작아지고 이와 같은 부재의 낮은 강성은 사용하중 상태에서 허용처짐량이나 균열폭 등과 같은 사용성이 부재의 설계를 결정하게 되는 주요 요인으로 작용하게 된다$^{1)}$. 미국, 캐나다, 일본 등의 선진국에서는 FRP 보강근을 사용한 콘크리트 부재의 연구가 활발히 진행되어 사용성에 대한 설계기준(안)이나 지침서를 제안하고 있으나 국내에서는 아직까지 이에 대한 연구가 미비하다. 따라서 본 연구에서는 보강비를 달리한 총 4개의 콘크리트 보에 대하여 180일간 지속하중을 재하하였으며 이들 보의 순간처짐(sohrt-term deflection) 및 장기처짐(long-term deflection)의 발생을 관찰하였다. 뿐만아니라 현재 ACI에서 제안하는 장기처짐 값을 계산하여 그 결과를 실험값과 비교 분석하였다. 비록 제한된 수의 비교이지만 180일간 지속하중을 받은 콘크리트 보의 장기처짐은 재하시 순간처짐의 약 40${\sim}$70%까지 발생되었으며 ACI에서 제안한 장기처짐값은 실제 보에서 발생한 장기처짐값을 최대 46% 과대평가하였다.

  • PDF

로켓 노즐 변위에 따른 추력 중심 변화 예측 (Prediction of the Thrust Center Movement Due To Rocket Nozzle Deflection)

  • 옥호남;김인선
    • 항공우주기술
    • /
    • 제6권1호
    • /
    • pp.136-145
    • /
    • 2007
  • 로켓 노즐의 변위에 따라 추력 중심이 어떻게 이동되는지를 예측하기 위해 전산유동해석을 수행하였다. 노즐 변위각을 0/1/3도로 하여 3차원 계산을 수행하였으며, 축대칭 계산에서 보지 못했던 공력계수의 진동이 관찰되었다. 변위각 1도 및 3도 조건에 대하여 추력중심 위치가 -16 mm 및 -4 mm로 나타났으며, 노즐 변위에 따른 추력 중시의 변화는 무시할 만한 정도라고 볼 수 있다. 이와 더불어 오해하기 쉬운 로켓 엔진의 추력 발생 원리를 간략히 수학적으로 기술하였으며, 로켓 외부 유동이나 노즐 변위와 같은 대칭 조건에서 압력 중심을 어떻게 정의해야 할 것인지에 대해서도 논하였다.

  • PDF

A Case Study on GNSS Based Deflection and Dynamic Characteristics Monitoring Analysis for SeoHae Bridge

  • Lee, Jae Kang;Kim, Jung Ok
    • 한국측량학회지
    • /
    • 제35권5호
    • /
    • pp.389-404
    • /
    • 2017
  • The main purpose of this presented investigation is to build up the BHMS based on GNSS. This proposed monitoring system can conduct the deflection and dynamic characteristics analysis by using only GNSS positioning solution. The general bridge monitoring system being operated recently is composed of a combination of various sensors that are able to conduct deflection monitoring and dynamic characteristics monitoring analysis at the same time. However, GNSS based BHMS has the unique procedure in terms of data analysis. In the other words, GNSS positioning solution is firstly applied to deflection monitoring analysis then, this deflection analysis can be sequentially reflected in the dynamic characteristics. Unfortunately, the adjustment result of GNSS positioning solution estimated through various options and conditions and the process of monitoring analysis has not been fulfilled systematically. This means that different results or analysis value are presented according to the methodology and officers. Most of researches have been focusing on deflection monitoring analysis and some investigation regarding to dynamic characteristics is recently introduced. Moreover, it is not still reported the systematic investigation with regards to proper filtering and analysis methodology. This study was carried out based on a large amount of data, from this, various variables not reported yet are actively considered. Therefore, specific software for both monitoring analysis have been developed.

Effects of cyclic loading on the long-term deflection of prestressed concrete beams

  • Zhang, Lihai;Mendis, Priyan;Hon, Wong Chon;Fragomeni, Sam;Lam, Nelson;Song, Yilun
    • Computers and Concrete
    • /
    • 제12권6호
    • /
    • pp.739-754
    • /
    • 2013
  • Creep and shrinkage have pronounced effects on the long-term deflection of prestressed concrete members. Under repeated loading, the rate of creep in prestressed concrete members is often accelerated. In this paper, an iterative computational procedure based on the well known Model B3 for creep and shrinkage was developed to predict the time-dependent deflection of partially prestressed concrete members. The developed model was validated using the experimental observed deflection behavior of a simply supported partially prestressed concrete beam under repeated loading. The validated model was then employed to make predictions of the long-term deflection of the prestressed beams under a variety of conditions (e.g., water cement ratio, relatively humidity and time at drying). The simulation results demonstrate that ignoring creep and shrinkage could lead to significant underestimation of the long-term deflection of a prestressed concrete member. The model will prove useful in reducing the long-term deflection of the prestressed concrete members via the optimal selection of a concrete mix and prestressing forces.

Effect of GGBFS on time-dependent deflection of RC beams

  • Shariq, M.;Abba, H.;Prasad, J.
    • Computers and Concrete
    • /
    • 제19권1호
    • /
    • pp.51-58
    • /
    • 2017
  • The paper presents the experimental investigations for studying the effect of ground granulated blast furnace slag (GGBFS) on the time-dependent deflection of reinforced concrete (RC) beams due to creep and shrinkage. The RC beams were reinforced with 2-10 mm bars at tension side and subjected to constant sustained two-point loading for the period of 150 days. The amount of cement replacement by GGBFS was varied from 0 to 60% with an increment of 20%. The total deflection was measured at different ages of up to 150 days under sustained loads. The experiments revealed that the time-dependent deflection of the reinforced concrete RC beams containing GGBFS was higher than that of plain concrete RC beams. At 150 days, the average creep and shrinkage deflection of RC beams containing 20%, 40% and 60% GGBFS was 1.25, 1.45 and 1.75 times higher than the plain concrete beams. A new model, which is an extension of authors' earlier model, is proposed to incorporate the effect of GGBFS content in predicting the long-term deflection of RC beams. Besides validating the new model with the current data with higher percentage of tension reinforcement, it was also used to predict the authors' earlier data containing lesser percentage of tension reinforcement with reasonable accuracy.

휨 모멘트에 대한 오이의 응력이완(應力弛緩) 특성(特性) (Stress Relaxation Properties of Cucumber under Bending Moment)

  • 송천호;김만수;박종민
    • Journal of Biosystems Engineering
    • /
    • 제18권3호
    • /
    • pp.262-269
    • /
    • 1993
  • Stress relaxation behaviors of the cucumber under bending moment were tested with UTM at three levels of loading rate and initial deflection ratio. Sample cucumber was selected from three cultivars of cucumber, Cheongjangmadi, Baekdadagi, and Gyeousalicheongjang, because these cultivars are the most popular grown cultivars in Korea. When the bending moment was applied to the cucumber sample, the effective span between simple supports was held a constant value of 116mm with consideration of the selected sample length. The objectives of this study were to develop the rheological models such as linear and nonlinear models of the stress relaxation for the cucumber samples, and to investigate the effects of loading rate and initial deflection ratio on the stress relaxation behavior of the cucumber. The results of this study may be summarized as follows : 1. Stress relaxation behavior of the cucumber could be well described by the generalized Maxwell model for each level of deflection ratio. But the stress relaxation behavior of the sample was found to be initial deflection ratio and time dependent, and it was represented the nonlinear viscoelastic model as a function of initial deflection ratio and time. 2. Stress relaxation behavior of the cucumber samples was very highly affected by the loading rate and the initial deflection ratio. The more loading rate and initial deflection ratio resulted in the more initial bending stress and after stress relaxation progressed more rapidly. 3. At the same test conditions, it was found that the stress relaxation rate of Cheongjangmadi was faster than that of other cultivars.

  • PDF

원전 냉각수 취수용 지중매설 GFRP관의 구조적 거동 조사 (An Investigation of Structural Behavior of Underground Buried GFRP Pipe in Cooling Water Intake for the Nuclear Power Plant)

  • 이형규;박준석
    • 복합신소재구조학회 논문집
    • /
    • 제6권2호
    • /
    • pp.91-96
    • /
    • 2015
  • GRP pipe (Glass-fiber Reinforced Plastic Pipe) lines making use of FRP (Fiber Reinforced Plastic) are generally thinner, lighter, and stronger than the existing concrete or steel pipe lines, and it is excellent in stiffness/strength per unit weight. In this study, we present the result of field test for buried GRP pipes with large diameter(2,400mm). The vertical and horizontal ring deflections are measured for 387 days. The short-term deflection measured by the field test is compared with the result predicted by the Iowa formula. In addition, the long-term ring deflection is predicted by using the procedure suggested in ASTM D 5365(ANNEX) in the range of 40 to 60 years of service life of the pipe based on the experimental results. From the study, it was found that the long-term vertical and horizontal ring deflection up to 60 years is less than the 5% ring deflection limitation.

단면구성요소(斷面構成要素)에 관(關)한 목질복합(木質複合) I및 Box형 보의 구조적(構造的) 성능(性能) 분석(分析) (I) (Analysis of Structural Performance of Wood Composite I and Box Beam on Cross Section Component (I) - Calculation and Analysis of Flexural Rigidity and Deflection -)

  • 오세창;이필우
    • Journal of the Korean Wood Science and Technology
    • /
    • 제19권2호
    • /
    • pp.40-55
    • /
    • 1991
  • To investigate the influence of cross section geometries on the behavior of composite beams in the case of small span to depth ratio and deep beams. the static flexural behavior of composite I-beams and Box- beams was evaluated. 12 types of composite I -beams composed of LVL flanges and particleboard or plywood web and 3 types of composite Box-beams composed of LVL flanges and plywood web were tested under one-point loading. The load-deflection curves were almost linear to failure, therefore, the behavior of tested composite beams was elastic. The theoretical flexural rigidity of composite beams was calculated and compared with observed flexural rigidity. The highest value was found in I-W type beams and the lowest value was found in G-P type beams. The difference between theoretical and observed flexural rigidity was small. Theoretical total deflection of tested composite beams was calculated using flexural rigidity and compared with actual deflection. Shear deflection of these beams was evaluated by the approximation method, solid crosss section method and elementary method. The difference between actual deflection and expected deflection was not found in D, E and F type beams. This defference was small in G, H and I type beams or Box-beam.

  • PDF