• 제목/요약/키워드: definitional sentences

검색결과 2건 처리시간 0.014초

기술문서 정의문 패턴을 이용한 전문용어사전 자동추출 및 활용방안 (Automatic Extraction and Usage of Terminology Dictionary Based on Definitional Sentences Patterns in Technical Documents)

  • 한희정;김태영;두효철;오효정
    • 정보관리학회지
    • /
    • 제34권4호
    • /
    • pp.81-99
    • /
    • 2017
  • 기술문서는 지식정보사회에서 생성되는 중요 연구 성과물로, 이를 제대로 활용하기 위해서는 정보 요약 및 정보추출과 같은 개선된 정보 처리 방법을 토대로 기술문서 활용의 편의성을 높여줄 필요가 있다. 이에 본 연구는 기술문서의 핵심 정보를 추출하기 위한 방안으로, 기술문서의 구조와 정의문 패턴을 기반으로 전문용어 및 정의문을 자동 추출하고, 이를 기반으로 전문용어사전을 구축할 수 있는 시스템을 제안하였다. 나아가 전문용어사전을 지식메모리로서 보다 다양하게 활용할 수 있도록 전문용어사전에 기반한 개인화서비스 제공방안을 제안하였다. 이처럼 전문용어 및 정의문 자동추출을 기반으로 전문용어사전을 구축하게 되면 새롭게 등장하는 전문용어를 빠르게 수용할 수 있어 이용자들이 최신정보를 보다 손쉽게 찾을 수 있다. 더불어 개인화된 전문용어사전을 이용자에게 제공한다면 전문용어사전의 가치와 활용성, 검색의 효율성을 극대화할 수 있다.

기술 용어에 대한 한국어 정의 문장 자동 생성을 위한 순환 신경망 모델 활용 연구 (Research on the Utilization of Recurrent Neural Networks for Automatic Generation of Korean Definitional Sentences of Technical Terms)

  • 최가람;김한국;김광훈;김유일;최성필
    • 한국문헌정보학회지
    • /
    • 제51권4호
    • /
    • pp.99-120
    • /
    • 2017
  • 본 논문에서는 지속적으로 커져가는 산업 시장에 대해 관련 연구자들이 이를 효율적으로 분석할 수 있는 반자동 지원 체제개발을 위한 기술 용어와 기술 개념에 대한 정의문 및 설명문을 자동으로 생성하는 한국어 문장 생성 모델을 제시한다. 한국어 정의 문장 생성을 위하여 딥러닝 기술 중 데이터의 전/후 관계를 포함한 시퀀스 레이블링이 가능한 LSTM을 활용한다. LSTM을 근간으로 한 두 가지 모델은 기술명을 입력할 시 그에 대한 정의문 및 설명문을 생성한다. 다양하게 수집된 대규모 학습 말뭉치를 이용해 실험한 결과, 본 논문에서 구현한 2가지 모델 중 CNN 음절 임베딩을 활용한 어절 단위 LSTM 모델이 용어에 대한 정의문 및 설명문을 생성하는데 더 나은 결과를 도출시킨다는 사실을 확인하였다. 본 논문의 연구 결과를 바탕으로 동일한 주제를 다루는 문장 집합을 생성할 수 있는 확장 모델을 개발할 수 있으며 더 나아가서는 기술에 대한 문헌을 자동으로 작성하는 인공지능 모델을 구현할 수 있으리라 사료된다.