• Title/Summary/Keyword: deficient mode

Search Result 31, Processing Time 0.025 seconds

Direct displacement-based seismic assessment of concrete frames

  • Peng, Chu;Guner, Serhan
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.355-365
    • /
    • 2018
  • Five previously-tested reinforced concrete frames were modelled using a nonlinear finite element analysis procedure to demonstrate the accurate response simulations for seismically-deficient frames through pushover analyses. The load capacities, story drifts, and failure modes were simulated. This procedure accounts for the effects of shear failures and the shear-axial force interaction, and thus is suitable for modeling seismically-deficient frames. It is demonstrated that a comprehensive analysis method with a capability of simulating material constitutive response and significant second-order mechanisms is essential in achieving a satisfactory response simulation. It is further shown that such analysis methods are invaluable in determining the expected seismic response, safety, and failure mode of the frame structures for a performance-based seismic evaluation. In addition, a new computer program was developed to aid researchers and engineers in the direct displacement-based seismic design process by assessing whether a frame structure meets the code-based performance requirements by analyzing the analysis results. As such, the proposed procedure facilitates the performance-based design of new buildings as well as the numerical assessment and retrofit design of existing buildings. A sample frame analysis was presented to demonstrate the application and verification of the approach.

Experimental investigations and FE simulation of exterior BCJs retrofitted with CFRP fabric

  • Halahla, Abdulsamee M.;Rahman, Muhammad K.;Al-Gadhib, Ali H.;Al-Osta, Mohammed A.;Baluch, Mohammed H.
    • Earthquakes and Structures
    • /
    • v.17 no.4
    • /
    • pp.337-354
    • /
    • 2019
  • This paper presents the results of experimental and numerical studies conducted to investigate the behavior of exterior reinforced concrete beam column joints (BCJ) strengthened by using carbon fiber reinforced polymer (CFRP) sheets. Twelve reinforced concrete beam-column joints (BCJ) were tested in an experimental program by simulating the joints in seismically deficient old buildings. One group of BCJs was designed to fail in flexure at the BCJ interface, and the second group was designed to ensure joint shear failure. One specimen in each set was -retrofitted with CFRP sheet wrapped diagonally around the joint. The specimens were subjected to both monotonic and cyclic loading up to failure. 3D finite element simulation of the BCJs tested in the experimental program was carried out using the software ABAQUS, adopting the damage plasticity model (CDP) for concrete. The experimental results showed that retrofitting of the shear deficient, BCJs by CFRP sheets enhanced the strength and ductility and the failure mode changed from shear failure in the joints to the desired flexural failure in the beam segment. The FE simulation of BCJs showed a good agreement with the experimental results, which indicated that the CDP model could be used to model the problems of the monotonic and cyclic loading of beam-column reinforced concrete joints.

Analyzing Accessibility of Emergency Shelters Based on Service Population: The Case of Outdoor Evacuation Places for Earthquake in Jung-gu, Seoul (생활인구를 고려한 대피시설 접근성 분석: 서울 중구지역 지진 옥외 대피장소를 사례로)

  • Kim, Sang-Gyoon;Shin, Sang-Young;Nam, Hyeon-Jung
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.51-62
    • /
    • 2022
  • Purpose: This study analyzes accessibility of outdoor evacuation places for earthquake and the accessibility improvement effects when expanding the evacuation places in accessibility-deficient areas. In order to consider real-world evacuees, the accessibility analysis is based on service population not on resident population. Method: Location-allocation model as a GIS-based spatial optimization mode is used to analyze accessibility and vulnerable areas to evacuation places. Of location-allocation problem types, 'Maximize Coverage' method is chosen to allocate as many potential evacuees as possible to evacuation places. And impedence cutoffs or evacuation distances (times) are applied to three classes: 500m (7.5 minutes), 1,000m (15 minutes), and 1,500m (22.5 minutes). Case study area is Jung-gu areas, Seoul as a high-density downtown area. Result: Results show that accessibility-deficient areas and population to evacuation places are much more in service population than in resident population. Accessibility is significantly improved when increases when expanding the evacuation places in accessibility-deficient areas. Yet, accessibility-deficient areas are still remained since available lands are insufficient in the high-density downtown area. Conclusion: The study suggests that temporary evacuation facilities like outdoor evacuation places for earthquake need to consider real potential evacuees based not only on resident population but also on service population. Also, policy measures to provide emergency shelters need to more utilize spatial optimization tools like location-allocation model.

On the Design of Simple-structured Adaptive Fuzzy Logic Controllers

  • Park, Byung-Jae;Kwak, Seong-Woo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.93-99
    • /
    • 2003
  • One of the methods to simplify the design process for a fuzzy logic controller (FLC) is to reduce the number of variables representing the rule antecedent. This in turn decreases the number of control rules, membership functions, and scaling factors. For this purpose, we designed a single-input FLC that uses a sole fuzzy input variable. However, it is still deficient in the capability of adapting some varying operating conditions although it provides a simple method for the design of FLC's. We here design two simple-structured adaptive fuzzy logic controllers (SAFLC's) using the concept of the single-input FLC. Linguistic fuzzy control rules are directly incorporated into the controller by a fuzzy basis function. Thus some parameters of the membership functions characterizing the linguistic terms of the fuzzy control rules can be adjusted by an adaptive law. In our controllers, center values of fuzzy sets are directly adjusted by an adaptive law. Two SAFLC's are designed. One of them uses a Hurwitz error dynamics and the other a switching function of the sliding mode control (SMC). We also prove that 1) their closed-loop systems are globally stable in the sense that all signals involved are bounded and 2) their tracking errors converge to zero asymptotically. We perform computer simulations using a nonlinear plant.

Machine Learning-Based Rapid Prediction Method of Failure Mode for Reinforced Concrete Column (기계학습 기반 철근콘크리트 기둥에 대한 신속 파괴유형 예측 모델 개발 연구)

  • Kim, Subin;Oh, Keunyeong;Shin, Jiuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.113-119
    • /
    • 2024
  • Existing reinforced concrete buildings with seismically deficient column details affect the overall behavior depending on the failure type of column. This study aims to develop and validate a machine learning-based prediction model for the column failure modes (shear, flexure-shear, and flexure failure modes). For this purpose, artificial neural network (ANN), K-nearest neighbor (KNN), decision tree (DT), and random forest (RF) models were used, considering previously collected experimental data. Using four machine learning methodologies, we developed a classification learning model that can predict the column failure modes in terms of the input variables using concrete compressive strength, steel yield strength, axial load ratio, height-to-dept aspect ratio, longitudinal reinforcement ratio, and transverse reinforcement ratio. The performance of each machine learning model was compared and verified by calculating accuracy, precision, recall, F1-Score, and ROC. Based on the performance measurements of the classification model, the RF model represents the highest average value of the classification model performance measurements among the considered learning methods, and it can conservatively predict the shear failure mode. Thus, the RF model can rapidly predict the column failure modes with simple column details.

Experimental evaluation of external beam-column joints reinforced by deformed and plain bar

  • Adibi, Mahdi;Shafaei, Jalil;Aliakbari, Fatemeh
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.113-127
    • /
    • 2020
  • In this study, the behavior of external beam-column joints reinforced by plain and deformed bars with non-seismic reinforcement details is investigated and compared. The beam-column joints represented in this study include a benchmark specimen by seismic details in accordance with ACI 318M-11 requirements and four other deficient specimens. The main defects of the non-seismic beam-column joints included use of plain bar, absence of transverse steel hoops, and the anchorage condition of longitudinal reinforcements. The experimental results indicate that using of plain bars in non-seismic beam-column joints has significantly affected the failure modes. The main failure mode of the non-seismic beam-column joints reinforced by deformed bars was the accumulation of shear cracks in the joint region, while the failure mode of the non-seismic beam-column joints reinforced by plain bars was deep cracks at the joint face and intersection of beam and column and there was only miner diagonal shear cracking at the joint region. In the other way, use of plain bars for reinforcing concrete can cause the behavior of the substructure to be controlled by slip of the beam longitudinal bars. The experimental results show that the ductility of non-seismic beam-column joints reinforced by plain bars has not decreased compared to the beam-column joints reinforced by deformed bars due to lack of mechanical interlock between plain bars and concrete. Also it can be seen a little increase in ductility of substructure due to existence of hooks at the end of the development length of the bars.

Seismic improvement of infilled nonductile RC frames with external mesh reinforcement and plaster composite

  • Kamanli, Mehmet;Korkmaz, Hasan H.;Unal, Alptug;Balik, Fatih S.;Bahadir, Fatih;Cogurcu, Mustafa T.
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.761-778
    • /
    • 2015
  • The objective of this paper is to report the result of an experimental program conducted on the strengthening of nonductile RC frames by using external mesh reinforcement and plaster application. The main objective was to test an alternative strengthening technique for reinforced concrete buildings, which could be applied with minimum disturbance to the occupants. Generic specimen is two floors and one bay RC frame in 1/2 scales. The basic aim of tested strengthening techniques is to upgrade strength, ductility and stiffness of the member and/or the structural system. Six specimens, two of which were reference specimens and the remaining four of which had deficient steel detailing and poor concrete quality were strengthened and tested in an experimental program under cyclic loading. The parameters of the experimental study are mesh reinforcement ratio and plaster thickness of the infilled wall. The effects of the mesh reinforced plaster application for strengthening on behavior, strength, stiffness, failure mode and ductility of the specimens were investigated. Premature and unexpected failure mode has been observed at first and second specimens failed due to inadequate plaster thickness. Also third strengthened specimen failed due to inadequate lap splice of the external mesh reinforcement. The last modified specimen behaved satisfactorily with higher ultimate load carrying capacity. Externally reinforced infill wall composites improve seismic behavior by increasing lateral strength, lateral stiffness, and energy dissipation capacity of reinforced concrete buildings, and limit both structural and nonstructural damages caused by earthquakes.

Phytochromes A and B: Specificity of photoperception and structure/function analysis of bilin chromophores

  • Shinomura, Tomoko;Hanzawa, Hiroko;Furuya, Masaki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.90-93
    • /
    • 2002
  • Phytochrome A (phyA) and phytochrome B (phyB) perceive light and adapt to fluctuating circumstances by different manners in terms of effective wavelengths, required fluence and photoreversibility. Action spectra for induction of seed germination and inhibition of hypocotyl elongation using phytochrome mutants of Arabidopsis showed major difference. PhyA is the principal photoreceptor for the very low fluence responses and the far-red light-induced high irradiance responses, while phyB controls low fluence response in a red/far-red reversible mode. The structural requirement of their bilin chromophores for photosensory specificity of phyA and phyB was investigated by reconstituting holophytochromes through feeding various synthetic bilins to the following chromophore-deficient mutants: hy1, hyl/phyA and hyl/phyB mutants of Arabidopsis. We found that the vinyl side-chain of the D-ring in phytochromobilin interacts with phyA apoprotein. This interaction plays a direct role in mediating the specific photosensory function of phyA. The ethyl side-chain of the D-ring in phycocyanobilin fails to interact with phyA apoprotein, therefore, phyA specific photosensory function is not observed. In contrast, both phytochromobilin and phycocyanobilin interact with phyB apoprotein and induce phyB specific photosensory functions. Structural requirements of the apoproteins and the chromophores for the specific photoperception of phyA and phyB are discussed.

  • PDF

Study on seismic strengthening of railway bridge pier with CFRP and concrete jackets

  • Ding, Mingbo;Chen, Xingchong;Zhang, Xiyin;Liu, Zhengnan;Lu, Jinghua
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.275-283
    • /
    • 2018
  • Seismic strengthening is essential for existing bridge piers which are deficient to resist the earthquake. The concrete and CFRP jackets with a bottom-anchoring method are used to strengthen railway bridge piers with low reinforcement ratio. Quasi-static tests of scaled down model piers are performed to evaluate the seismic performance of the original and strengthened bridge pier. The fracture characteristics indicate that the vulnerable position of the railway bridge pier with low reinforcement ratio during earthquake is the pier-footing region and shows flexural failure mode. The force-displacement relationships show that the two strengthening techniques using CFRP and concrete jackets can both provide a significant improvement in load-carrying capacity for railway bridge piers with low reinforcement ratio. It is clear that the bottom-anchoring method by using planted steel bars can guarantee the CFRP and concrete jackets to work jointly with original concrete piers Furthermore, it can be found that the use of CFRP jacket offers advantages over concrete jacket in improving the energy dissipation capacity under lateral cyclic loading. Therefore, the seismic strengthening techniques by the use of CFRP and concrete jackets provide alternative choices for the large numbers of existing railway bridge piers with low reinforcement ratio in China.

Experimental investigation on optimal shear strengthening of RC beams using NSM GFRP bars

  • Ramezanpour, M.;Morshed, R.;Eslami, A.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.45-52
    • /
    • 2018
  • Several techniques have been developed for shear strengthening of reinforced concrete (RC) members by using fiber reinforced polymer (FRP) composites. However, debonding of FRP retrofits from concrete substrate still deemed as a challenging concern in their application which needs to be scrutinized in details. As a result, this paper reports on the results of an experimental investigation on shear strengthening of RC beams using near surface mounted (NSM) FRP reinforcing bars. The main objective of the experimentation was increasing the efficiency of shear retrofits by precluding/postponing the premature debonding failure. The experimental program was comprised of six shear deficient RC beams. The test parameters include the FRP rebar spacing, inclination angle, and groove shape. Also, an innovative modification was introduced to the conventional NSM technique and its efficiency was evaluated by experimental observation and measurement. The results testified the efficiency of glass FRP (GFRP) rebars in increasing the shear strength of the test specimens retrofitted using conventional NSM technique. However, debonding of FRP bars impeded exploiting all retrofitting advantages and induced a premature shear failure. On the contrary, application of the proposed modified NSM (MNSM) technique was not only capable of preventing the premature debonding of FRP bars, but also could replace the failure mode of specimen from the brittle shear to a ductile flexural failure which is more desirable.