• Title/Summary/Keyword: defense proteins

Search Result 188, Processing Time 0.032 seconds

Human Cytomegalovirus Inhibition of Interferon Signal Transduction

  • Daniel M. Miller
    • Korean Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.203-203
    • /
    • 2002
  • Cytomegalovirus (CMV), a beta-herpesvirus with worldwide distribution, exhibits host persistence, a distinguishing characteristic of all herpesviruses. This persistence is dependent upon restricted gene expression in infected cells as well as the ability of productively infected cells to escape from normal cell-mediated anti-viral immunosurveillance. Type I (IFN-α/β) and type II (IFN-γ) interferons are major components of the innate defense system against viral infection. They are potent inducers of MHC class I and II antigens and of antigen processing proteins. Additionally, IFNS mediate direct antiviral effects through induction effector molecules that block viral infection and replications such as 2′, 5-oligoadenylate synthetase (2, 5-OAS). IFNS function through activation of well-defined signal transduction pathways that involve phosphorylation of constituent proteins and ultimate formation of active transcription factors. Recent studies have shown that a number of diverse viruses, including CMV, EBV, HPV mumps and Ebola, are capable of inhibiting IFN-mediated signal transduction through a variety of mechanisms. As an example, CMV infection inhibits the ability of infected cells Is transcribe HLA class I and II antigens as well as the antiviral effector molecules 2, 5-OAS and MxA I. EMSA studies have shown that IFN-α and IFN-γ are unable to induce complete signal transduction in the presence of CMV infection, phenomena that are associated with specific decreases in JAKl and p48. Viral inhibition of IFN signal transduction represents a new mechanistic paradigm for increased viral survival, a paradigm predicting widespread consequences in the case of signal transduction factors common to multiple cytokine pathways.

Transcriptome-based identification of water-deficit stress responsive genes in the tea plant, Camellia sinensis

  • Tony, Maritim;Samson, Kamunya;Charles, Mwendia;Paul, Mireji;Richard, Muoki;Mark, Wamalwa;Stomeo, Francesca;Sarah, Schaack;Martina, Kyalo;Francis, Wachira
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.302-310
    • /
    • 2016
  • A study aimed at identifying putative drought responsive genes that confer tolerance to water stress deficit in tea plants was conducted in a 'rain-out shelter' using potted plants. Eighteen months old drought tolerant and susceptible tea cultivars were each separately exposed to water stress or control conditions of 18 or 34% soil moisture content, respectively, for three months. After the treatment period, leaves were harvested from each treatment for isolation of RNA and cDNA synthesis. The cDNA libraries were sequenced on Roche 454 high-throughput pyrosequencing platform to produce 232,853 reads. After quality control, the reads were assembled into 460 long transcripts (contigs). The annotated contigs showed similarity with proteins in the Arabidopsis thaliana proteome. Heat shock proteins (HSP70), superoxide dismutase (SOD), catalase (cat), peroxidase (PoX), calmodulinelike protein (Cam7) and galactinol synthase (Gols4) droughtrelated genes were shown to be regulated differently in tea plants exposed to water stress. HSP70 and SOD were highly expressed in the drought tolerant cultivar relative to the susceptible cultivar under drought conditions. The genes and pathways identified suggest efficient regulation leading to active adaptation as a basal defense response against water stress deficit by tea. The knowledge generated can be further utilized to better understand molecular mechanisms underlying stress tolerance in tea.

Characterization of Mitochondrial Heat Shock Protein 75 (mtHSP75) of the Big-belly Seahorse Hippocampus abdominalis (빅벨리해마(Hippocampus abdominalis)에서의 Mitochondrial Heat Shock Protein 75 유전자의 특징과 발현 분석)

  • Ko, Jiyeon;Qiang, Wan;Lee, Sukkyoung;Bathige, S.D.N.K.;Oh, Minyoung;Lee, Jehee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.3
    • /
    • pp.354-361
    • /
    • 2015
  • Mitochondrial heat shock protein 75 (mtHSP75) is a member of the HSP90 family and plays essential roles in refolding proteins of the mitochondrial matrix. Mitochondria provide energy in the form of ATP and generate reactive oxygen species (ROS). Heat shock proteins (HSPs) are activated in response to stress, and protect cells. In this study, we characterized the mtHSP75 of the big-belly seahorse Hippocampus abdominalis. The protein (BsmtHSP75) is encoded by an open reading frame (ORF) of 2,157 nucleotides, has 719 amino acids (aa), and is of molecular mass 82 kDa. BsmtHSP75 has two functional domains, a histidine kinase-like ATPase (HATPase_c) domain (123-276 aa) and an HSP90 family domain (302-718 aa). BsmtHSP75 was expressed in all tested tissues of healthy seahorses. The ovary contained the highest transcription level, followed (in order) by the blood, brain, and muscle. Pouch tissue showed the lowest expression level. The expression of BsmtHSP75 was significantly (P<0.05) up-regulated on viral or bacterial challenge, suggesting that BsmtHSP75 plays a role in the immune defense against bacterial and viral pathogens.

Human Cytomegalovirus Inhibition of Interferon Signal Transduction

  • Miller, Daniel M.;Cebulla, Colleen M.;Sedmak, Daniel D.
    • Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.203-208
    • /
    • 2000
  • Cytomegalovirus (CMV), a beta-herpesvirus with worldwide distribution, exhibits host persistence, a distinguishing characteristic of all herpesviruses. This persistence is dependent upon restricted gene expression in infected cells as well as the ability of productively infected cells to escape from normal cell-mediated anti-viral immunosurveillance. Type I (IFN-$\alpha$/$\beta$) and type II (IFN-γ) interferons are major components of the innate defense system against viral infection. They are potent inducers of MHC class I and II antigens and of antigen processing proteins. Additionally, IFNS mediate direct antiviral effects through induction effector molecules that block viral infection and replications such as 2', 5-oligoadenylate synthetase (2, 5-OAS). IFNS function through activation of well-defined signal transduction pathways that involve phosphorylation of constituent proteins and ultimate formation of active transcription factors. Recent studies have shown that a number of diverse viruses, including CMV, EBV, HPV mumps and Ebola, are capable of inhibiting IFN-mediated signal transduction through a variety of mechanisms. As an example, CMV infection inhibits the ability of infected cells Is transcribe HLA class I and II antigens as well as the antiviral effector molecules 2, 5-OAS and MxA I. EMSA studies have shown that IFN-$\alpha$ and IFN-γ are unable to induce complete signal transduction in the presence of CMV infection, phenomena that are associated with specific decreases in JAKl and p48. Viral inhibition of IFN signal transduction represents a new mechanistic paradigm for increased viral survival, a paradigm predicting widespread consequences in the case of signal transduction factors common to multiple cytokine pathways.

  • PDF

Computational approaches for prediction of protein-protein interaction between Foot-and-mouth disease virus and Sus scrofa based on RNA-Seq

  • Park, Tamina;Kang, Myung-gyun;Nah, Jinju;Ryoo, Soyoon;Wee, Sunghwan;Baek, Seung-hwa;Ku, Bokkyung;Oh, Yeonsu;Cho, Ho-seong;Park, Daeui
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.2
    • /
    • pp.73-83
    • /
    • 2019
  • Foot-and-Mouth Disease (FMD) is a highly contagious trans-boundary viral disease caused by FMD virus, which causes huge economic losses. FMDV infects cloven hoofed (two-toed) mammals such as cattle, sheep, goats, pigs and various wildlife species. To control the FMDV, it is necessary to understand the life cycle and the pathogenesis of FMDV in host. Especially, the protein-protein interaction between FMDV and host will help to understand the survival cycle of viruses in host cell and establish new therapeutic strategies. However, the computational approach for protein-protein interaction between FMDV and pig hosts have not been applied to studies of the onset mechanism of FMDV. In the present work, we have performed the prediction of the pig's proteins which interact with FMDV based on RNA-Seq data, protein sequence, and structure information. After identifying the virus-host interaction, we looked for meaningful pathways and anticipated changes in the host caused by infection with FMDV. A total of 78 proteins of pig were predicted as interacting with FMDV. The 156 interactions include 94 interactions predicted by sequence-based method and the 62 interactions predicted by structure-based method using domain information. The protein interaction network contained integrin as well as STYK1, VTCN1, IDO1, CDH3, SLA-DQB1, FER, and FGFR2 which were related to the up-regulation of inflammation and the down-regulation of cell adhesion and host defense systems such as macrophage and leukocytes. These results provide clues to the knowledge and mechanism of how FMDV affects the host cell.

Humanized Mice for the Evaluation of Francisella tularensis Vaccine Candidates

  • Oh, Hanseul;Kim, C-Yoon;Kim, Chang-Hwan;Hur, Gyeung-Haeng;Lee, Ji Min;Chang, Seo-Na;Park, Jae-Hak
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.157-164
    • /
    • 2018
  • Francisella tularensis (FT), a highly infectious pathogen, is considered to be a potential biological weapon owing to the current lack of a human vaccine against it. Tul4 and FopA, both outer membrane proteins of FT, play an important role in the bacterium's immunogenicity. In the present study, we evaluated the immune response of mice - humanized with human CD34+ cells (hu-mice) - to a cocktail of recombinant Tul4 and FopA (rTul4 and rFopA), which were codon-optimized and expressed in Escherichia coli. Not only did the cocktail-immunized hu-mice produce a significant human immunoglobulin response, they also exhibited prolonged survival against an attenuated live vaccine strain as well as human T cells in the spleen. These results suggest that the cocktail of rTul4 and rFopA had successfully induced an immune response in the hu-mice, demonstrating the potential of this mouse model for use in the evaluation of FT vaccine candidates.

Activated Phenoloxidase Interacts with A Novel Glycine-rich Protein on the Yeast Two-hybrid System

  • Lee, Sun-Woo;Lee, Hyun-Seong;Kim, Eun-Jun;Yoo, Mi-Ae;Lee, Bok-Luel
    • BMB Reports
    • /
    • v.34 no.1
    • /
    • pp.15-20
    • /
    • 2001
  • One of the innate immune reactions in invertebrates is the pro-phenoloxidase (pro-PO) activation system that is involved in the generation of superoxide, melanin synthesis, and the subsequent sequestration of foreign matter entering the hemocoel of the invertebrates. However, the molecular mechanism of this biological reaction is still obscure. To expand our understanding of the biological roles of the pro-PO activation system in invertebrates, we performed a yeast two-hybrid screening by using three regions of pro-PO as bait and a yeast two-hybrid cDNA library from Tenebrio molitor larvae as prey We isolated a novel partial cDNA clone that encodes a glycine-rich protein that interacted with the active phenoloxidase (termed phenoloxidase interacting protein, POIP). POIP consists of two domains: One is an N-terminal unique domain and the other is a C-terminal glycine-rich domain. The C-terminal glycine-rich domain showed sequential homology with those of insect antifungal proteins. Also, the yeast two-hybrid screen in a reverse orientation (using POIP as bait) yielded PO, suggesting that the PO-POIP interaction is specific. By using a 315 bP PCR fragment of the N-terminal unique region of POIP, we cloned the full-length cDNA of POIP from the Tenebruo cDNA library constructed by using E. coli injected larvae. The interaction analysis between PO, and a truncated fragment lacking the N-terminal unique region of POIP, indicated that the N-terminal unique region is necessary for interaction between PO and POIP. The expression level of the POIP mRNA is increased by bacterial injection into T. molitor larvae. This suggests that POIP might be engaged in the humoral defense reaction.

  • PDF

A Synthetic Tul4 and FopA Peptide Cocktail of Francisella tularensis Induces Humoral and Cell-Mediated Immune Responses in Mice

  • Oh, Hanseul;Kim, C-Yoon;Kim, Chang-Hwan;Hur, Gyeung-Haeng;Park, Jae-Hak
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1613-1619
    • /
    • 2016
  • Francisella tularensis is a highly virulent pathogen of humans and other mammals. Moreover, F. tularensis has been designated a category A biothreat agent, and there is growing interest in the development of a protective vaccine. In the present study, we determine the in vitro and in vivo immune responses of a subunit vaccine composed of recombinant peptides Tul4 and FopA from epitopes of the F. tularensis outer membrane proteins. The recombinant peptides with adjuvant CpG induced robust immunophenotypic change of dendritic cell (DC) maturation and secretion of inflammatory cytokines (IL-6, IL-12). In addition, the matured DCs enabled ex vivo proliferation of naive splenocytes in a mixed lymphocyte reaction. Lastly, we determined the in vivo immune response by assessment of antibody production in C57BL/6 mice. Total IgG levels were produced after immunization and peaked in 6 weeks, and moreover, Tul4-specific IgG was confirmed in the mice receiving peptides with or without CpG. Based on these results, we concluded that the recombinant peptides Tul4 and FopA have immunogenicity and could be a safe subunit vaccine candidate approach against F. tularensis.

Acute phase protein mRNA expressions and enhancement of antioxidant defense system in Black-meated Silkie Fowls supplemented with clove (Eugenia caryophyllus) extracts under the influence of chronic heat stress

  • Bello, Alhassan Usman;Sulaiman, Jelilat Aderonke;Aliyu, Madagu Samaila
    • Journal of Animal Science and Technology
    • /
    • v.58 no.11
    • /
    • pp.39.1-39.12
    • /
    • 2016
  • Background: The current study investigates the anti-stress effects of clove (Eugenia caryophyllus) extracts (0, 200, 400, and 600 mg/kg) on serum antioxidant biomarkers, immune response, immunological organ growth index, and expression levels of acute phase proteins (APPs); ovotransferrin (OVT), ceruloplasmin (CP), ceruloplasmin (AGP), C-reactive protein (CRP), and serum amyloid-A (SAA) mRNA in the immunological organs of 63-d-old male black-meated Silkie fowls subjected to 21 d chronic heat stress at $35{\pm}2^{\circ}C$. Results: The results demonstrated that clove extract supplementation in the diet of Silkie fowls subjected to elevated temperature (ET) improve growth performance, immune responses, and suppressed the activities of glutathion peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT), and thioredoxin reductase (TXNRD); reduced serum malonaldehyde (MDA) and glutathione (GSH) concentrations when compared with fowls raised under thermoneutral condition (TC). Upon chronic heat stress and supplementation of clove extracts, the Silkie fowls showed a linear increase in GSH-Px, SOD, CAT, and TXNRD activities (P = 0.01) compared with fowls fed diets without clove extract. ET decreased (P < 0.05) the growth index of the liver, spleen, bursa of Fabricius and thymus. However, the growth index of the liver, spleen, bursa of Fabricius and thymus increased significantly (P < 0.05) which corresponded to an increase in clove supplemented levels. The expression of OVT, CP, AGP, CRP, and SAA mRNA in the liver, spleen, bursa of Fabricius and thymus were elevated (P < 0.01) by ET compared with those maintained at TC. Nevertheless, clove mitigates heat stress-induced overexpression of OVT, CP, AGP, CRP and SAA mRNA in the immune organs of fowls fed 400 mg clove/kg compared to other groups. Conclusions: The results showed that clove extracts supplementation decreased oxidative stress in the heat-stressed black-meated fowls by alleviating negative effects of heat stress via improvement in growth performance, antioxidant defense mechanisms, immunity, and regulate the expression of acute phase genes in the liver and immunological organs.

Induction of Defense Response Against Rhizoctonia solani in Cucumber Plants by Endophytic Bacterium Bacillus thuringiensis GS1

  • Seo, Dong-Jun;Nguyen, Dang-Minh-Chanh;Song, Yong-Su;Jung, Woo-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.407-415
    • /
    • 2012
  • An endophytic bacterium, Bacillus thuringiensis GS1, was isolated from bracken (Pteridium aquilinum) and found to have maximal production of chitinase (4.3 units/ml) at 5 days after culture. This study investigated the ability of B. thuringiensis GS1 to induce resistance to Rhizoctonia solani KACC 40111 (RS) in cucumber plants. Chitinase activity was greatest in RS-treated plants at 4 days. ${\beta}$-1,3-Glucanase activity was highest in GS1-treated plants at 5 days. Guaiacol peroxidase (GPOD) activity increased continuously in all treated plants for 5 days. Ascorbate peroxidase (APX) activity in RS-treated plants was increased 1.5-fold compared with the control at 4 days. Polyphenol oxidase (PPO) activity in RS-treated plants was increased 1.5-fold compared with the control at 3 days. At 5 days after treatment, activity staining revealed three bands with chitinase activity (Ch1, Ch2, and Ch3) on SDS-PAGE of cucumber plants treated with GS1+RS, whereas only one band was observed for RS-treated plants (Ch2). One GPOD isozyme (Gp1) was also observed in response to treatment with RS and GS1+RS at 4 days. One APX band (Ap2) was present on the native-PAGE gel of the control, and GS1- and GS1+RS-treated plants at 1 day. PPO bands (Po1 and Po2) from RS- and GS1+RS-treated plants were stronger than in the control and GS1-treated plants upon native-PAGE at 5 days. Taken together, these results indicate that the induction of PR proteins and defense-related enzymes by B. thuringiensis GS1 might have suppressed the damping-off caused by R. solani KACC 40111 in cucumber plants.