• Title/Summary/Keyword: defects in wood

Search Result 80, Processing Time 0.019 seconds

The Development of Image Processing System Using Area Camera for Feeding Lumber (영역카메라를 이용한 이송중인 제재목의 화상처리시스템 개발)

  • Kim, Byung Nam;Lee, Hyoung Woo;Kim, Kwang Mo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.37-47
    • /
    • 2009
  • For the inspection of wood, machine vision is the most common automated inspection method used at present. It is required to sort wood products by grade and to locate surface defects prior to cut-up. Many different sensing methods have been applied to inspection of wood including optical, ultrasonic, X-ray sensing in the wood industry. Nowadays the scanning system mainly employs CCD line-scan camera to meet the needs of accurate detection of lumber defects and real-time image processing. But this system needs exact feeding system and low deviation of lumber thickness. In this study low cost CCD area sensor was used for the development of image processing system for lumber being fed. When domestic red pine being fed on the conveyer belt, lumber images of irregular term of captured area were acquired because belt conveyor slipped between belt and roller. To overcome incorrect image merging by the unstable feeding speed of belt conveyor, it was applied template matching algorithm which was a measure of the similarity between the pattern of current image and the next one. Feeding the lumber over 13.8 m/min, general area sensor generates unreadable image pattern by the motion blur. The red channel of RGB filter showed a good performance for removing background of the green conveyor belt from merged image. Threshold value reduction method that was a image-based thresholding algorithm performed well for knot detection.

Detection of Knots by Image Processing Technique (화상처리기술을 이용한 옹이의 검출)

  • 김병남;이형우
    • Journal of the Korea Furniture Society
    • /
    • v.12 no.1
    • /
    • pp.27-37
    • /
    • 2001
  • Automation of wood processing is strongly required to improve the productivity and quality of wood products in wood industry which is one of the most labor-intensive industries. Classification of surface defects on wood boards such as knots is one of the important steps towards a completely automated wood processing system. In this study the possibility of detection of knots by image processing technique was investigated. Algorithm for the automatic determination of threshold value was developed to enhance the flexibility of image processing system. Two different approaches, grid method and tile method, were developed to enhance the speed in extracting features from images. Grid method showed slightly higher processing speed and tile method proved much more stable in determining threshold values. Tile size of $5{\times}5$ pixels or $6{\times}6$ pixels was found to be proper to get stable results with resonable processing time.

  • PDF

A Study on Quality Improvement of Exporting Wood Products I. Kiln Drying Schedules for Oak, Ramin and Meranti (수출용(輸出用) 목재가공품(木材加工品)의 품질개선(品質改善)에 관(關)한 연구(硏究) I. 참나무, 라민 및 나왕의 인공건조(人工乾燥) 스케줄)

  • Chung, Byung-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.3-18
    • /
    • 1974
  • The exports of plywood are increasing annually and it has ranked first in the world market because of the high quality product and manufactured using mordern techniques. However, it is known that the exports of the other wood products, except plywood, is inactive because of their low quality. Accordingly, to increase the exports of various wood products investigations were carried out on kiln drying techniques to improve the quality of the wood. Wet wood should be kiln dried before use to prevent various drying defects such as distortion, shrinkage etc., which would develop after processing,:and also wet wood is not suitable for cutting, gluing and finishing. Therefore, the kiln drying properties of lumber from such species as oak, ramin and meranti which are used in large quantity for manufacturing exporting wood products have been studied. The results of the research are summarized as follows. (1) The end checks and the time for drying from initial moisture content of about 40 percent to 5 percent moisture content in ovendry were investigated as follows: (2) The kiln dried results, for 30mm stock, which are presented by using kiln schedule table 3 are as follows: (3) The kiln schedules for ramin, meranti and oak are given respectively as follows: Ramin kiln schedule: Table 17 and Table 18. Meranti schedule : Table 12. Oak schedule : Table 15.

  • PDF

Visual Classification of Wood Knots Using k-Nearest Neighbor and Convolutional Neural Network (k-Nearest Neighbor와 Convolutional Neural Network에 의한 제재목 표면 옹이 종류의 화상 분류)

  • Kim, Hyunbin;Kim, Mingyu;Park, Yonggun;Yang, Sang-Yun;Chung, Hyunwoo;Kwon, Ohkyung;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.229-238
    • /
    • 2019
  • Various wood defects occur during tree growing or wood processing. Thus, to use wood practically, it is necessary to objectively assess their quality based on the usage requirement by accurately classifying their defects. However, manual visual grading and species classification may result in differences due to subjective decisions; therefore, computer-vision-based image analysis is required for the objective evaluation of wood quality and the speeding up of wood production. In this study, the SIFT+k-NN and CNN models were used to implement a model that automatically classifies knots and analyze its accuracy. Toward this end, a total of 1,172 knot images in various shapes from five domestic conifers were used for learning and validation. For the SIFT+k-NN model, SIFT technology was used to extract properties from the knot images and k-NN was used for the classification, resulting in the classification with an accuracy of up to 60.53% when k-index was 17. The CNN model comprised 8 convolution layers and 3 hidden layers, and its maximum accuracy was 88.09% after 1205 epoch, which was higher than that of the SIFT+k-NN model. Moreover, if there is a large difference in the number of images by knot types, the SIFT+k-NN tended to show a learning biased toward the knot type with a higher number of images, whereas the CNN model did not show a drastic bias regardless of the difference in the number of images. Therefore, the CNN model showed better performance in knot classification. It is determined that the wood knot classification by the CNN model will show a sufficient accuracy in its practical applicability.

Evaluation in Physiomechanical Characteristics of Carbonized Oriented Strand Board by Different Carbonizing Conditions

  • Lee, Min;Park, Sang-Bum;Lee, Sang-Min;Son, Dong-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.163-171
    • /
    • 2014
  • Environmental issues about indoor air quality have been increased and focused on volatile organic compounds (VOCs) caused cancer, asthma, and skin disease. Reducing VOCs has been attempted in many different methods such as using environmentally friendly materials and air cleaner or purifier. Charcoal is well known material for absorbing VOCs. Therefore, carbonized board from medium density fiberboard has been developed. We assumed that the source of carbonized boards can be any type of wood-based panels. In this study, carbonized boards were manufactured from oriented strand board (OSB) at 400, 600, 800, and $1000^{\circ}C$. Each carbonized OSB (c-OSB) was evaluated and determined physiomechanical characteristics such as exterior defects, dimensional shrinkage, modulus of elasticity, and bending strength. No external defects were observed on c-OSBs at all carbonizing conditions. As carbonizing temperature increased, less porosity between carbonized wood fibers was observed by SEM analysis. The higher rate of dimensional shrinkage was observed on c-OSB at $1000^{\circ}C$ (66%) than c-OSB at 400, 600, and $800^{\circ}C$ (47%, 58%, and 63%, respectively). The densities of c-OSBs were lower than original OSB, but there was no significant different among the c-OSBs. The bending strength of c-OSB increased 1.58 MPa (c-OSB at $400^{\circ}C$) to 8.03 MPa (c-OSB at $1000^{\circ}C$) as carbonization temperature increased. Carbonization temperature above $800^{\circ}C$ yielded higher bonding strength than that of gypsum board (4.6 MPa). In conclusion, c-OSB may be used in sealing and wall for decorating purpose without additional artwork compare to c-MDF which has smooth surface.

A Study on the Mechanical, Thermal, Morphological, and Water Absorption Properties of Wood Plastic Composites (WPCs) Filled with Talc and Environmentally-Friendly Flame Retardants (친환경 난연제와 탈크를 첨가한 목재·플라스틱 복합재의 기계적, 열적, 형태학적 및 수분흡수 특성에 관한 연구)

  • Lee, Danbee;Kim, Birm-June
    • Journal of the Korea Furniture Society
    • /
    • v.27 no.2
    • /
    • pp.137-144
    • /
    • 2016
  • Wood plastic composite (WPC) is a green composite made of wood flour and thermoplastics to provide better performance by removing the defects of both wood and plastics. However, relatively low thermal stability and poor fire resistance of wood and plastics included in WPC have been still issues in using WPC as a building material for interior applications. This study investigated the effect of environmentally-friendly flame retardants (EFFRs) on the mechanical, thermal, morphological, and water absorption properties of wood flour (WF)/talc/polypropylene (PP) composites in comparison with neat PP. The whole EFFRs-filled WF/talc/PP composites showed higher values in flexural strength, flexural modulus, and impact strength compared to neat PP. In thermal properties, aluminum hydroxide (AH)-filled composite showed a $36^{\circ}C$ reduction in maximum thermal decomposition temperature ($T_{max}$) compared to neat PP, but magnesium hydroxide (MH) played an important role in improving thermal stability of filled composite by showing the highest $T_{max}$. From this research, it can be said that MH has potentials in reinforcing PP-based WPCs with improvement of thermal stability.

Shrinkages of Prefrozen or Presteamed Wood (전처리(前處理) 목재(木材)의 수축율(收縮率) 변화(變化))

  • Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.66-71
    • /
    • 1994
  • To increase drying rate and reduce drying degradation, pretreatments such as prefreezing and presteaming have been widely used in wood industries. Presteaming lumbers prior to kiln drying is known positively to improve its permeability, to increase diffusion coefficient and to reduce discoloration, but negatively to increase collapse. Prefreezing lumbers prior to kiln drying is also known to reduce significantly its drying defects and its shrinkages. Thus it is no doubt that the pretreated lumbers shrink diversely from the untreated. In this study the shrinkage behaviors of the pretreated specimens are investigated by drying two tropical hardwoods (Apitong and Taun) in three different dying conditions: high temperature and slow drying rate (drying in a closed cylinder), high temperature and rapid drying rate (drying in an oven) and low temperature and slow drying rate(drying at room temperature). The prefrozen specimens show the least volumetric shrinkages in most drying conditions. The specimens dried in cylinders shrink most among all drying conditions. In general the pretreated specimens reached the 30 % moisture content faster than the untreated by about 30 %.

  • PDF

Microwave-Vacuum Drying of Short Roundwoods and Wood Turneries (단척 통나무와 선반가공목의 마이크로웨이브-진공 건조)

  • Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.25-32
    • /
    • 2001
  • A microwave vacuum (MW/V) dryer was developed for drying short roundwoods, from which woodcraft souvenirs in Korean market are mostly made, and which were hardly dried without defects in a conventional kiln. It consisted of three 1.5 kW magnetrons of 2,450 MHz, a vacuum pump, a load cell of 100 kg and a cavity of $580{\times}580{\times}1,360\;mm^3$. A computer program was developed to switch on or off the magnetrons according to drying schedules, those were based on microwave injection time or the average of wood temperatures. To evaluate the new MW/V dryer the roundwood specimens of rigida pine, poplar and birch were dried. Their log diameters and lengths ranged from 125 to 25 em and from 25 to 50 cm, respectively. In spite of the presence of minor drying defects, the MW/V drying is found to be an effective method for drying short roundwoods. Wooden turneries made of red alder and ash logs were also MW/V dried from green to 4%MC without any degradation. The rates of the MW/V drying were examined for three different lengths of poplar logs.

  • PDF

Effects of Pretreatment for Controlling Internal Water Transport Direction on Moisture Content Profile and Drying Defects in Large-Cross-Section Red Pine Round Timber during Kiln Drying

  • Bat-Uchral BATJARGAL;Taekyeong LEE;Myungsik CHO;Chang-Jin LEE;Hwanmyeong YEO
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.493-508
    • /
    • 2023
  • Round timber materials of 600 mm length, cut from large-cross-section round timber of red pine (Pinus densiflora S. et Z.) of 450 mm width and 4.2 m length, were prepared as the target of kiln drying in this study. After treating the target materials through end sealing (ES), end sealing - kerfing (ES-K), lateral sealing - end sealing - boring (LS-ES-B), or lateral sealing - partial end sealing (LS-PES), the effects of the treatment on the incidence of drying defects were determined. The target materials with exposed lateral surface and sealed cross surface were steamed at the initial temperature of 65℃ above the official pest control temperature of 56℃, followed by kiln drying toward the final temperature of 75℃. The target materials with sealed lateral surfaces, on the other hand, were dried at the initial temperature of 90℃ at almost the maximum temperature of conventional kiln drying, as there is no risk of early check formation caused by surface moisture evaporation. The final temperature was set at approximately 100℃. The drying time, taken for the target materials with initial moisture content of 70%-80% to reach the target moisture content of 19%, varied across treatment conditions. The measured drying time was 1,146 hours (approximately 48 days) for the timber with sealed cross surface and 745 hours (approximately 31 days) for the timber with sealed lateral surface, until the moisture content reached the target level. The formation of surface checks could not be prevented in the control and ES groups, but a definite preventive effect was obtained for the LS-ES-B and LS-PES groups.

Effect of Cross-Sectional Dimension on the Shrinkage Property of Korean Red-Pine Wood (소나무재의 단면치수에 따른 수축률 특성)

  • Hwang, Kweonhwan;Park, Beyung-Su
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.231-238
    • /
    • 2009
  • Red pine (Pinus densiflora) has been used for structural wood members of Korean traditional residence (HANOK) and historic wooden structures. For these constructions, generally, natural drying has conducted for long time; however, unless drying is conducted sufficiently, it could cause several drying defects such as check or warping. Shrinkage changes of red pine species for small clear specimens and big-size specimens according to the conditions of moisture contents, were examined. For the estimation of volumetric shrinkage at a special moisture content, it was more precise to divide the range of moisture contents into two groups, green to air-dry and air-dry to oven-dry. The volumetric shrinkage had no difference with specimen sizes in sapwood, but decreased as specimen size increased in heartwood.