• Title/Summary/Keyword: defect factor

Search Result 396, Processing Time 0.022 seconds

Mg Delta-Doping Effect on a Deep Hole Center Related to Electrical Activation of a p-Type GaN Thin Film

  • Park, Hyo-Yeol;Jeon, Kyoung-Nam;Kim, Keun-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.1
    • /
    • pp.37-41
    • /
    • 2010
  • The authors investigated the photoluminescence (PL) and the electron paramagnetic resonance (EPR) from an magnesium (Mg)-doped GaN thin film with a delta-doped layer. The regularly doped sample shows a PL peak at 2.776 eV for the as-grown sample, and the peak shifts to 2.904 eV and increases in intensity for the annealed sample. The delta-doped sample also shows the same PL peak as does the regularly doped sample. However, only the annealed delta-doped layer shows a sharp EPR with a small isotropic Lande g-factor, $g_{II}$, of 2.029. This resonance is attributed to the delta-doped layer, which forms a hole-bound Mg-N atomic structure instead of the $Mg_{Ga}-V_N$ defect complex, indicating that the delta-doped sample was not optically activated to form PL centers but was instead electrically activated to form a hole-bound state.

Role of Intraoperative Angiography in the Surgical Treatment of Cerebral Aneurysms (뇌동맥류의 수술 중 뇌혈관 조영술의 역할)

  • Sim, Jae Hong
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.4
    • /
    • pp.491-499
    • /
    • 2000
  • Objective : In the cerebral aneurysm surgery, the goal is complete circulatory exclusion of the aneurysm without compromise of normal vessels. In an operating room, an operator should confirm the completeness and precision of the surgical result, before closing the wound. Object of this study was to determine which cases require intraoperative angiography. Methods : We reported our experience with 48 intraoperative angiographic studies performed during the surgical treatment of cerebral aneurysm of these 48 cases. There were 5 giant(10.4%), 15 globular(1.5-2.5cm)(31.25%) and 28 saccular(58.3%) aneurysm. We recorded the incidence of unexpected findings, such as residual aneurysms, major vessel occlusions. Using Fischer's exact test, we assessed whether unexpected angiographic findings showed any correlation with aneurysm site, size and clinical findings. Results : In 5 cases(10.4%), we detected unexpected angiographic findings which resulted in clip adjustment. By means of clip adjustment, an operator could restore the flow of two major arterial occlusion(4.2%) and also obliterate three persistent filling aneurysms(6.3%). Globular aneurysm was the only factor to predict unexpected angiographic findings(p<0.05). The subgroup of globular and giant aneurysm has a high risk of occlusion of the parent artery and its branches and/or residual aneurysm. There were two minor complications related to this procedure. Conclusion : Intraoperative assessment makes it possible to recognize and correct the technical defect. Particularly in globular aneurysm, we were able to prevent both the chance for another operation and the risk of postoperative complications.

  • PDF

Enhancement of thermoelectric properties of MBE grown un-doped ZnO by thermal annealing

  • Khalid, Mahmood;Asghar, Muhammad;Ali, Adnan;Ajaz-Un-Nabi, M.;Arshad, M. Imran;Amin, Nasir;Hasan, M.A.
    • Advances in Energy Research
    • /
    • v.3 no.2
    • /
    • pp.117-124
    • /
    • 2015
  • In this paper, we have reported an enhancement in thermoelectric properties of un-doped zinc oxide (ZnO) grown by molecular beam epitaxy (MBE) on silicon (001) substrate by annealing treatment. The grown ZnO thin films were annealed in oxygen environment at $500^{\circ}C-800^{\circ}C$, keeping a step of $100^{\circ}C$ for one hour. Room temperature Seekbeck measurements showed that Seebeck coefficient and power factor increased from 222 to $510{\mu}V/K$ and $8.8{\times}10^{-6}$ to $2.6{\times}10^{-4}Wm^{-1}K^{-2}$ as annealing temperature increased from 500 to $800^{\circ}C$ respectively. This observation was related with the improvement of crystal structure of grown films with annealing temperature. X-ray diffraction (XRD) results demonstrated that full width half maximum (FWHM) of ZnO (002) plane decreased and crystalline size increased as the annealing temperature increased. Photoluminescence study revealed that the intensity of band edge emission increased and defect emission decreased as annealing temperature increased because the density of oxygen vacancy related donor defects decreased with annealing temperature. This argument was further justified by the Hall measurements which showed a decreasing trend of carrier concentration with annealing temperature.

Dynamic Responses in Ultra-Soft Magnetic Thin Films (초 연자성 박막에서의 동적 자화 거동)

  • 정인섭
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 1994
  • The magnetization dynamics was investigated by solving possible origins of overdamped susceptibility observed in ultra-soft magnetic amorphous thin films. The experimental high frequency spectrum and computational spectrum calculated from Gilbert's equation of motion were compared in order to find proper damping factor $\alpha{\approx}20$ and demagnetizing coefficients $D_{x}{\approx}D_{y}{\approx}D_{z}{\approx}0$ for ultra-soft magnetic films. A magnetization vortex mode was, then, proposed to explain the origin of the reversible susceptibility and other anomalies of the ultra-soft magnetic heterogeneous thin films. In this mode it is suggested that there occur, within the nanoscale structural features of the ultra-soft films, incoherent rotational spin motions that are highly damped by the energy transfer from short wavelength spin wave modes and local defect structure mode interactions.

  • PDF

On Shrinkage Cavities Shape Modeling for Fatigue Simulation of A356 Alloy Specimen (A356 합금 시편의 수축공 결함형상에 대한 피로해석용 형상 모델링 방법)

  • Kwak, Si-Young;Cho, In-Sung
    • Journal of Korea Foundry Society
    • /
    • v.39 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • During the casting process, it is possible to minimize shrinkage and blowholes by modifying the casting design. However, it is impossible to eliminate these factors completely. Therefore, mechanical design engineers apply a sufficient safety factor owing to the possibility of insufficient performances of the cast products. In this paper, prediction method of the fatigue life of cast products containing shrinkage is conducted by using CT (computed tomography) and the SSM (shape simplification method), and additional fatigue analyses are carried out. The analysis results are then compared to results from actual experiments on samples with shrinkage defects. It is found to be that the considering actual shrinkage in cast products by means of stress and fatigue analyses is more accurate and effective. It is also considered that the proposed hot spot method provides us a good tool to predict the fatigue lifes of cast product.

Fatigue evaluation and CFRP strengthening of diaphragm cutouts in orthotropic steel decks

  • Ke, Lu;Li, Chuanxi;He, Jun;Lu, Yongjun;Jiao, Yang;Liu, Yongming
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.453-469
    • /
    • 2021
  • The cracking at the transverse diaphragm cutout is one of the most severe fatigue failures threatening orthotropic steel decks (OSDs), whose mechanisms and crack treatment techniques have not been fully studied. In this paper, full-scale experiments were first performed to investigate the fatigue performance of polished cutouts involving the effect of an artificial geometrical defect. Following this, comparative experimental testing for defective cutouts strengthened with carbon fiber-reinforced polymer (CFRP) was carried out. Numerical finite element analysis was also performed to verify and explain the experimental observations. Results show that the combinative effect of the wheel load and thermal residual stress constitutes the external driving force for the fatigue cracking of the cutout. Initial geometrical defects are confirmed as a critical factor affecting the fatigue cracking. The principal stress 6 mm away from the free edge of the cutout can be adopted as the nominal stress of the cutout during fatigue evaluation, and the fatigue resistance of polished cutouts is higher than Grade A in AASHTO specification. The bonded CFRP system is highly effective in extending the fatigue life of the defective cutouts. The present study provides some new insights into the fatigue evaluation and repair of OSDs.

Prediction of Positions of Gas Defects Generated from Core (중자에서 발생한 가스 결함 위치 예측)

  • Matsushita, Makoto;Kosaka, Akira;Kanatani, Shigehiro
    • Journal of Korea Foundry Society
    • /
    • v.42 no.1
    • /
    • pp.61-66
    • /
    • 2022
  • Hydraulic units are important components of agricultural and construction machinery, and thus require high-quality castings. However, gas defects occurring inside the sand cores of the castings due to the resin used is a problem. This study therefore aimed to develop a casting simulation method that can clarify the gas defect positions. Gas defects are thought to be caused by gas generated after the molten metal fills up the mold cavity. The gas constant is the most effective factor for simulating this gas generated from sand cores. It is calculated by gas generating temperature and analysis of composition in the inert gas atmosphere modified according to the mold filling conditions of molten metal. It is assumed that gases generated from the inside of castings remain if the following formula is established. [Time of occurrence of gas generation] + [Time of occurrence of gas floating] > [Time of occurrence of casting surface solidification] The possibility of gas defects is evaluated by the time of occurrence of gas generation and gas floating calculated using the gas constant. The residual position of generated gases is decided by the closed loops indicating the final solidification location in the casting simulation. The above procedure enables us to suggest suitable casting designs with zero gas defects, without the need to repeat casting tests.

Phosphorylation of REPS1 at Ser709 by RSK attenuates the recycling of transferrin receptor

  • Kim, Seong Heon;Cho, Jin-hwa;Park, Bi-Oh;Park, Byoung Chul;Kim, Jeong-Hoon;Park, Sung Goo;Kim, Sunhong
    • BMB Reports
    • /
    • v.54 no.5
    • /
    • pp.272-277
    • /
    • 2021
  • RalBP1 associated EPS domain containing 1 (REPS1) is conserved from Drosophila to humans and implicated in the endocytic system. However, an exact role of REPS1 remains largely unknown. Here, we demonstrated that mitogen activated protein kinase kinase (MEK)-p90 ribosomal S6 Kinase (RSK) signaling pathway directly phosphorylated REPS1 at Ser709 upon stimulation by epidermal growth factor (EGF) and amino acid. While REPS2 is known to be involved in the endocytosis of EGF receptor (EGFR), REPS1 knockout (KO) cells did not show any defect in the endocytosis of EGFR. However, in the REPS1 KO cells and the KO cells reconstituted with a non-phosphorylatable REPS1 (REPS1 S709A), the recycling of transferrin receptor (TfR) was attenuated compared to the cells reconstituted with wild type REPS1. Collectively, we suggested that the phosphorylation of REPS1 at S709 by RSK may have a role of the trafficking of TfR.

TEMPERATURE CONTROL AND COMPRESSIVE STRENGTH ASSESSMENT OF IN-PLACE CONCRETE STRUCTURES USING THE WIRELESS TEMPERATURE MEASURING SYSTEM BASED ON THE UBIQUITOUS SENSOR NETWORK

  • Ho Kyoo JO;Hyung Rae KIM;Tae Koo KIM
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.794-799
    • /
    • 2009
  • The temperature control of in-place concrete is the most important factor for an early age of curing concrete. Heat stress of mass concrete caused by the heat of hydration can induce the crack of concrete, and a frost damage from cold weather casting concrete results defect on compressive strength and degradation of durability. Therefore, success and failure of concrete work is dependant on the measurement and control of concrete temperature. In addition, the compressive strength assessment of in-place concrete obtained from the maturity calculated from the history of temperature make a reduction of construction cycle time, possible. For that purpose, wireless temperature measuring system was developed to control temperature and assess strength of concrete. And, it was possible to monitor the temperature of concrete over 1km apart from site office and to take a proper measure; mesh-type network was developed for wireless sensor. Furthermore, curing control system that contains the program capable to calculate the maturity of concrete from the history of temperature and to assess the compressive strength of concrete was established. In this study, organization and practical method of developed curing control system are presented; base on in-place application case.

  • PDF

Automatic detection system for surface defects of home appliances based on machine vision (머신비전 기반의 가전제품 표면결함 자동검출 시스템)

  • Lee, HyunJun;Jeong, HeeJa;Lee, JangGoon;Kim, NamHo
    • Smart Media Journal
    • /
    • v.11 no.9
    • /
    • pp.47-55
    • /
    • 2022
  • Quality control in the smart factory manufacturing process is an important factor. Currently, quality inspection of home appliance manufacturing parts produced by the mold process is mostly performed with the naked eye of the operator, resulting in a high error rate of inspection. In order to improve the quality competition, an automatic defect detection system was designed and implemented. The proposed system acquires an image by photographing an object with a high-performance scan camera at a specific location, and reads defective products due to scratches, dents, and foreign substances according to the vision inspection algorithm. In this study, the depth-based branch decision algorithm (DBD) was developed to increase the recognition rate of defects due to scratches, and the accuracy was improved.