• 제목/요약/키워드: deeplearning

검색결과 15건 처리시간 0.018초

물고기의 성장도를 예측하는 FGRS(Fish Growth Regression System) (FGRS(Fish Growth Regression System), Which predicts the growth of fish)

  • 원성권;심용보;손수락;정이나
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권5호
    • /
    • pp.347-353
    • /
    • 2023
  • 양식장에서 물고기의 성장을 측정하는 작업은 아직도 사람의 손이 많이 가는 방식을 사용한다. 이 방식은 많은 노동력이 필요하고, 물고기가 스트레스를 받아 폐사율에 악영향을 준다. 이러한 문제를 해결하기 위해 물고기의 성장도를 자동화하기 위한 시스템 FGRS(Fish Growth Regression System)를 제안한다. FGRS는 두 개의 모듈로 구성된다. 첫째는 Yolo v8 기반의 물고기를 디텍팅하는 모듈이고, 둘째는 물고기 영상 데이터를 CNN 기반의 신경망 모델을 이용하여 물고기의 성장도를 예측하는 모듈로 구성된다. 시뮬레이션 결과 학습전에는 예측 오차가 평균 134.2일로 나왔지만 학습 이후 평균 오차가 39.8일 까지 감소했다. 본 논문에서 제안한 시스템을 이용해 생육일을 예측하여 물고기의 성장예측을 활용해 양식장에서의 자동화에 기여할 수 있고, 많은 노동력 감소와 비용 절감 효과를 가져 올 수 있을 것이라 기대한다.

Efficient Semi-automatic Annotation System based on Deep Learning

  • Hyunseok Lee;Hwa Hui Shin;Soohoon Maeng;Dae Gwan Kim;Hyojeong Moon
    • 대한임베디드공학회논문지
    • /
    • 제18권6호
    • /
    • pp.267-275
    • /
    • 2023
  • This paper presents the development of specialized software for annotating volume-of-interest on 18F-FDG PET/CT images with the goal of facilitating the studies and diagnosis of head and neck cancer (HNC). To achieve an efficient annotation process, we employed the SE-Norm-Residual Layer-based U-Net model. This model exhibited outstanding proficiency to segment cancerous regions within 18F-FDG PET/CT scans of HNC cases. Manual annotation function was also integrated, allowing researchers and clinicians to validate and refine annotations based on dataset characteristics. Workspace has a display with fusion of both PET and CT images, providing enhance user convenience through simultaneous visualization. The performance of deeplearning model was validated using a Hecktor 2021 dataset, and subsequently developed semi-automatic annotation functionalities. We began by performing image preprocessing including resampling, normalization, and co-registration, followed by an evaluation of the deep learning model performance. This model was integrated into the software, serving as an initial automatic segmentation step. Users can manually refine pre-segmented regions to correct false positives and false negatives. Annotation images are subsequently saved along with their corresponding 18F-FDG PET/CT fusion images, enabling their application across various domains. In this study, we developed a semi-automatic annotation software designed for efficiently generating annotated lesion images, with applications in HNC research and diagnosis. The findings indicated that this software surpasses conventional tools, particularly in the context of HNC-specific annotation with 18F-FDG PET/CT data. Consequently, developed software offers a robust solution for producing annotated datasets, driving advances in the studies and diagnosis of HNC.

AR에 적용 가능한 마커리스 기반의 실내 위치 측정 기법 (Measurement Technique of Indoor location Based on Markerless applicable to AR)

  • 김재형;이승호
    • 전기전자학회논문지
    • /
    • 제25권2호
    • /
    • pp.243-251
    • /
    • 2021
  • 본 논문에서는 AR에 적용 가능한 마커리스 기반의 실내 위치 측정 기법을 제안한다. 제안한 기법은 다음과 같은 독창성을 갖는다. 첫 번째는 특징점을 추출하고 이를 이용하여 지역 패치를 생성하여 전체 이미지를 학습하지 않고 주변보다 더 유용한 지역 패치만을 학습하고 사용함으로써 더 빠른 연산이 가능하도록 한다. 두 번째는 Convolution Neural Network 구조를 사용한 딥러닝을 통해 학습을 진행하여 오차율을 줄여 정확도를 향상시킨다. 세 번째는 기존의 특징점 매칭 기법과는 다르게 좌우 이동을 포함한 실내 위치 측정이 가능하도록 한다. 네 번째는 매 프레임마다 새롭게 실내 위치를 측정하기 때문에 이동 중 앞쪽에서 발생한 오차가 누적되어 발생되는 것을 방지한다. 따라서 이동 거리가 길어져도 최종 도착점과 예측 실내 위치 간의 오차가 증가하지 않는다는 장점을 갖는다. 본 논문에서 제안하는 AR에 적용 가능한 마커리스 기반의 실내 위치 측정 기법의 소요시간과 정확도를 평가하기 위해 시행한 실험결과, 실제 실내 위치와 측정된 실내 위치의 차이가 평균 12.8cm, 최대 21.2cm로 측정되어서, 기존 IEEE 논문의 결과보다 우수한 실내 위치 측정 정확도를 나타내었다. 또한, 초당 20프레임으로 측정된 결과를 나타내어서 실시간으로 사용자의 실내 위치를 측정하는 것이 가능하다고 판단되었다.

주거환경에 대한 거주민의 만족도와 영향요인 분석 - 직방 아파트 리뷰 빅데이터와 딥러닝 기반 BERT 모형을 활용하여 - (Analysis of Resident's Satisfaction and Its Determining Factors on Residential Environment: Using Zigbang's Apartment Review Bigdata and Deeplearning-based BERT Model)

  • 권준현;이수기
    • 지역연구
    • /
    • 제39권2호
    • /
    • pp.47-61
    • /
    • 2023
  • 주거환경에 대한 만족도는 주거지 선택 및 이주 등에 영향을 미치는 주요인으로, 도시에서의 삶의 질과 직접적으로 연결된다. 최근 온라인 부동산 서비스의 증가로 주거환경에 대한 사람들의 만족도를 쉽게 확인할 수 있으며, 사람들이 평가하는 내용을 바탕으로 주거환경 만족 요인에 대한 분석이 가능하다. 이는 기존에 활용되던 설문조사 등의 방식보다 더 많은 양의 평가를 효율적으로 활용할 수 있음을 의미한다. 본 연구는 서울특별시를 대상으로 온라인 부동산 서비스인 '직방'에서 수집된 약 3만여 건의 아파트 리뷰를 분석에 활용하였다. 리뷰에 포함된 추천 평점을 토대로, 아파트 리뷰를 긍정적, 부정적으로 분류하고, 딥 러닝 기반 자연어 처리 모델인 BERT(Bidirectional Encoder Representations from Transformers)를 사용하여 리뷰를 자동으로 분류하는 모델을 개발하였다. 이후 SHAP(SHAPley Additive exPlanation)를 이용하여 분류에 중요한 역할을 하는 단어 토큰을 도출함으로 주거환경 만족도의 영향요인을 도출하였다. 더 나아가 Word2Vec을 이용하여 관련 키워드를 분석함으로써 주거환경에 대한 만족도 개선을 위한 우선 고려사항을 제시하였다. 본 연구는 거주자의 정성평가 자료인 아파트 리뷰 빅데이터와 딥러닝을 활용하여 주거환경에 대한 만족도를 긍정적, 부정적으로 자동 분류하는 모형을 제안하여 그 영향요인을 도출하는데 의의가 있다. 분석결과는 주거환경 만족도 향상을 위한 기초자료로 활용될 수 있으며 향후 아파트 단지 인근 주거환경 평가, 신규 단지 및 기반시설의 설계 및 평가 등에 활용될 수 있다.

하이브리드 빅데이터 분석을 통한 홍수 재해 예측 및 예방 (Flood Disaster Prediction and Prevention through Hybrid BigData Analysis)

  • 엄기열;이재현
    • 한국빅데이터학회지
    • /
    • 제8권1호
    • /
    • pp.99-109
    • /
    • 2023
  • 최근에 우리나라에서 뿐만 아니라, 세계 곳곳에서 태풍, 산불, 장마 등으로 인한 재해가 끊이지 않고 있고, 우리나라 태풍 및 호우로 인한 재산 피해액만 1조원이 넘고 있다. 이러한 재난으로 인해 많은 인명 및 물적 피해가 발생하고, 복구하는 데도 상당한 기간이 걸리며, 정부 예비비도 부족한 실정이다. 이러한 문제점들을 사전에 예방하고 효과적으로 대응하기 위해서는 우선 정확한 데이터를 실시간 수집하고 분석하는 작업이 필요하다. 그러나, 센서들이 위치한 환경, 통신 네트워크 및 수신 서버들의 상황에 따라 지연 및 데이터 손실 등이 발생할 수 있다. 따라서, 본 논문에서는 이러한 통신네트워크 상황에서도 분석을 정확하게 할 수 있는 2단계 하이브리드 상황 분석 및 예측 알고리즘을 제안한다. 1단계에서는 이기종의 다양한 센서로부터 강, 하천, 수위 및 경사지의 경사각 데이터를 수집/필터링/정제하여 빅데이터 DB에 저장하고, 인공지능 규칙기반 추론 알고리즘을 적용하여, 위기 경보 4단계를 판단한다. 강수량이 일정값 이상인데도 불구하고 1단계 결과가 관심 이하 단계에 있으면, 2단계 딥러닝 영상 분석을 수행한 후 최종 위기 경보단계를 결정한다.