• 제목/요약/키워드: deep-learning algorithm

검색결과 1,154건 처리시간 0.026초

Deep Learning 기반의 DGA 개발에 대한 연구 (A Study on the Development of DGA based on Deep Learning)

  • 박재균;최은수;김병준;장범
    • 한국인공지능학회지
    • /
    • 제5권1호
    • /
    • pp.18-28
    • /
    • 2017
  • Recently, there are many companies that use systems based on artificial intelligence. The accuracy of artificial intelligence depends on the amount of learning data and the appropriate algorithm. However, it is not easy to obtain learning data with a large number of entity. Less data set have large generalization errors due to overfitting. In order to minimize this generalization error, this study proposed DGA which can expect relatively high accuracy even though data with a less data set is applied to machine learning based genetic algorithm to deep learning based dropout. The idea of this paper is to determine the active state of the nodes. Using Gradient about loss function, A new fitness function is defined. Proposed Algorithm DGA is supplementing stochastic inconsistency about Dropout. Also DGA solved problem by the complexity of the fitness function and expression range of the model about Genetic Algorithm As a result of experiments using MNIST data proposed algorithm accuracy is 75.3%. Using only Dropout algorithm accuracy is 41.4%. It is shown that DGA is better than using only dropout.

Deep Learning and Color Histogram based Fire and Smoke Detection Research

  • Lee, Yeunghak;Shim, Jaechang
    • International journal of advanced smart convergence
    • /
    • 제8권2호
    • /
    • pp.116-125
    • /
    • 2019
  • The fire should extinguish as soon as possible because it causes economic loss and loses precious life. In this study, we propose a new atypical fire and smoke detection algorithm using deep learning and color histogram of fire and smoke. First, input frame images obtain from the ONVIF surveillance camera mounted in factory search motion candidate frame by motion detection algorithm and mean square error (MSE). Second deep learning (Faster R-CNN) is used to extract the fire and smoke candidate area of motion frame. Third, we apply a novel algorithm to detect the fire and smoke using color histogram algorithm with local area motion, similarity, and MSE. In this study, we developed a novel fire and smoke detection algorithm applied the local motion and color histogram method. Experimental results show that the surveillance camera with the proposed algorithm showed good fire and smoke detection results with very few false positives.

임베디드 시스템에서 사용 가능한 적응형 MFCC 와 Deep Learning 기반의 음성인식 (Voice Recognition-Based on Adaptive MFCC and Deep Learning for Embedded Systems)

  • 배현수;이호진;이석규
    • 제어로봇시스템학회논문지
    • /
    • 제22권10호
    • /
    • pp.797-802
    • /
    • 2016
  • This paper proposes a noble voice recognition method based on an adaptive MFCC and deep learning for embedded systems. To enhance the recognition ratio of the proposed voice recognizer, ambient noise mixed into the voice signal has to be eliminated. However, noise filtering processes, which may damage voice data, diminishes the recognition ratio. In this paper, a filter has been designed for the frequency range within a voice signal, and imposed weights are used to reduce data deterioration. In addition, a deep learning algorithm, which does not require a database in the recognition algorithm, has been adapted for embedded systems, which inherently require small amounts of memory. The experimental results suggest that the proposed deep learning algorithm and HMM voice recognizer, utilizing the proposed adaptive MFCC algorithm, perform better than conventional MFCC algorithms in its recognition ratio within a noisy environment.

딥러닝 기반의 특징점 추출 알고리즘을 활용한 고해상도 해저지형 생성기법 연구 (Research on High-resolution Seafloor Topography Generation using Feature Extraction Algorithm Based on Deep Learning)

  • 김현승;장재덕;현철;이성균
    • 시스템엔지니어링학술지
    • /
    • 제20권spc1호
    • /
    • pp.90-96
    • /
    • 2024
  • In this paper, we propose a technique to model high resolution seafloor topography with 1m intervals using actual water depth data near the east coast of the Korea with 1.6km distance intervals. Using a feature point extraction algorithm that harris corner based on deep learning, the location of the center of seafloor mountain was calculated and the surrounding topology was modeled. The modeled high-resolution seafloor topography based on deep learning was verified within 1.1m mean error between the actual warder dept data. And average error that result of calculating based on deep learning was reduced by 54.4% compared to the case that deep learning was not applied. The proposed algorithm is expected to generate high resolution underwater topology for the entire Korean peninsula and be used to establish a path plan for autonomous navigation of underwater vehicle.

딥러닝 알고리즘을 이용한 매설 배관 피복 결함의 간접 검사 신호 진단에 관한 연구 (Indirect Inspection Signal Diagnosis of Buried Pipe Coating Flaws Using Deep Learning Algorithm)

  • 조상진;오영진;신수용
    • 한국압력기기공학회 논문집
    • /
    • 제19권2호
    • /
    • pp.93-101
    • /
    • 2023
  • In this study, a deep learning algorithm was used to diagnose electric potential signals obtained through CIPS and DCVG, used indirect inspection methods to confirm the soundness of buried pipes. The deep learning algorithm consisted of CNN(Convolutional Neural Network) model for diagnosing the electric potential signal and Grad CAM(Gradient-weighted Class Activation Mapping) for showing the flaw prediction point. The CNN model for diagnosing electric potential signals classifies input data as normal/abnormal according to the presence or absence of flaw in the buried pipe, and for abnormal data, Grad CAM generates a heat map that visualizes the flaw prediction part of the buried pipe. The CIPS/DCVG signal and piping layout obtained from the 3D finite element model were used as input data for learning the CNN. The trained CNN classified the normal/abnormal data with 93% accuracy, and the Grad-CAM predicted flaws point with an average error of 2m. As a result, it confirmed that the electric potential signal of buried pipe can be diagnosed using a CNN-based deep learning algorithm.

Applying Deep Reinforcement Learning to Improve Throughput and Reduce Collision Rate in IEEE 802.11 Networks

  • Ke, Chih-Heng;Astuti, Lia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권1호
    • /
    • pp.334-349
    • /
    • 2022
  • The effectiveness of Wi-Fi networks is greatly influenced by the optimization of contention window (CW) parameters. Unfortunately, the conventional approach employed by IEEE 802.11 wireless networks is not scalable enough to sustain consistent performance for the increasing number of stations. Yet, it is still the default when accessing channels for single-users of 802.11 transmissions. Recently, there has been a spike in attempts to enhance network performance using a machine learning (ML) technique known as reinforcement learning (RL). Its advantage is interacting with the surrounding environment and making decisions based on its own experience. Deep RL (DRL) uses deep neural networks (DNN) to deal with more complex environments (such as continuous state spaces or actions spaces) and to get optimum rewards. As a result, we present a new approach of CW control mechanism, which is termed as contention window threshold (CWThreshold). It uses the DRL principle to define the threshold value and learn optimal settings under various network scenarios. We demonstrate our proposed method, known as a smart exponential-threshold-linear backoff algorithm with a deep Q-learning network (SETL-DQN). The simulation results show that our proposed SETL-DQN algorithm can effectively improve the throughput and reduce the collision rates.

스마트 빌딩 시스템을 위한 심층 강화학습 기반 양방향 전력거래 협상 기법 (Bi-directional Electricity Negotiation Scheme based on Deep Reinforcement Learning Algorithm in Smart Building Systems)

  • 이동구;이지영;경찬욱;김진영
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권5호
    • /
    • pp.215-219
    • /
    • 2021
  • 본 논문에서는 스마트 빌딩 시스템과 전력망이 각각의 전력거래 희망가격을 제안하고 조정하는 양방향 전력거래 협상 기법에 심층 강화학습 기법을 적용한 전력거래 기법을 제안한다. 심층 강화학습 기법 중 하나인 deep Q network 알고리즘을 적용하여 스마트 빌딩과 전력망의 거래 희망가격을 조정하도록 하였다. 제안하는 심층 강화학습 기반 양방향 전력거래 협상 알고리즘은 학습과정에서 평균 43.78회의 협상을 통해 가격 협의에 이르는 것을 실험을 통해 확인하였다. 또한, 본 연구에서 설정한 협상 시나리오에 따라 스마트 빌딩과 전력망이 거래 희망가격을 조정하는 과정을 실험을 통해 확인하였다.

Cloud Task Scheduling Based on Proximal Policy Optimization Algorithm for Lowering Energy Consumption of Data Center

  • Yang, Yongquan;He, Cuihua;Yin, Bo;Wei, Zhiqiang;Hong, Bowei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권6호
    • /
    • pp.1877-1891
    • /
    • 2022
  • As a part of cloud computing technology, algorithms for cloud task scheduling place an important influence on the area of cloud computing in data centers. In our earlier work, we proposed DeepEnergyJS, which was designed based on the original version of the policy gradient and reinforcement learning algorithm. We verified its effectiveness through simulation experiments. In this study, we used the Proximal Policy Optimization (PPO) algorithm to update DeepEnergyJS to DeepEnergyJSV2.0. First, we verify the convergence of the PPO algorithm on the dataset of Alibaba Cluster Data V2018. Then we contrast it with reinforcement learning algorithm in terms of convergence rate, converged value, and stability. The results indicate that PPO performed better in training and test data sets compared with reinforcement learning algorithm, as well as other general heuristic algorithms, such as First Fit, Random, and Tetris. DeepEnergyJSV2.0 achieves better energy efficiency than DeepEnergyJS by about 7.814%.

유전 알고리즘 기반의 심층 학습 신경망 구조와 초모수 최적화 (Genetic algorithm based deep learning neural network structure and hyperparameter optimization)

  • 이상협;강도영;박장식
    • 한국멀티미디어학회논문지
    • /
    • 제24권4호
    • /
    • pp.519-527
    • /
    • 2021
  • Alzheimer's disease is one of the challenges to tackle in the coming aging era and is attempting to diagnose and predict through various biomarkers. While the application of various deep learning-based technologies as powerful imaging technologies has recently expanded across the medical industry, empirical design is not easy because there are various deep earning neural networks architecture and categorical hyperparameters that rely on problems and data to solve. In this paper, we show the possibility of optimizing a deep learning neural network structure and hyperparameters for Alzheimer's disease classification in amyloid brain images in a representative deep earning neural networks architecture using genetic algorithms. It was observed that the optimal deep learning neural network structure and hyperparameter were chosen as the values of the experiment were converging.

다중 교차로에서 협력적 교통신호제어에 대한 연구 (A Study on Cooperative Traffic Signal Control at multi-intersection)

  • 김대호;정옥란
    • 전기전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.1381-1386
    • /
    • 2019
  • 도시의 교통 혼잡 문제가 심각해지면서 지능형 교통신호제어가 활발하게 연구되고 있다. 강화학습은 교통신호제어에 가장 활발하게 사용되고 있는 알고리즘으로 최근에는 심층 강화학습 알고리즘이 관심을 끌고 있다. 또한 심층 강화학습 알고리즘이 다양한 분야에서 높은 성능을 보이면서 심층 강화학습의 확장 버전들이 빠른 속도로 등장했다. 하지만 기존 교통신호제어 연구들은 대부분 단일 교차로 환경에서 진행되었으며, 단일 교차로의 교통 혼잡만 완화하는 방법은 도시 전체의 교통 상황을 고려하지 못한다는 한계가 있다. 본 논문에서는 다중 교차로 환경에서 협력적 교통신호제어를 제안한다. 신호제어 알고리즘에는 심층 강화학습의 확장 버전들이 결합된 알고리즘을 적용했으며 다중 교차로를 효율적으로 제어하기 위해 인접한 교차로의 교통 상황을 고려하였다. 실험에서는 제안하는 알고리즘과 기존 심층 강화학습 알고리즘을 비교하였으며, 더 나아가 협력적 방법이 적용된 모델과 적용되지 않은 모델의 실험 결과를 보여줌으로써 높은 성능을 증명한다.