Kim, Kyeong-min;Kim, Seong-jin;NamKoong, Ho-jung;Jung, Yun-ho
Journal of Advanced Navigation Technology
/
v.26
no.4
/
pp.211-218
/
2022
Continuous wave (CW) radar has the advantage of reliability and accuracy compared to other sensors such as camera and lidar. In addition, binarized neural network (BNN) has a characteristic that dramatically reduces memory usage and complexity compared to other deep learning networks. Therefore, this paper proposes binarized neural network based human identification and motion classification system using CW radar. After receiving a signal from CW radar, a spectrogram is generated through a short-time Fourier transform (STFT). Based on this spectrogram, we propose an algorithm that detects whether a person approaches a radar. Also, we designed an optimized BNN model that can support the accuracy of 90.0% for human identification and 98.3% for motion classification. In order to accelerate BNN operation, we designed BNN hardware accelerator on field programmable gate array (FPGA). The accelerator was implemented with 1,030 logics, 836 registers, and 334.904 Kbit block memory, and it was confirmed that the real-time operation was possible with a total calculation time of 6 ms from inference to transferring result.
Synthetic Aperture Radar (SAR) is considered to be suitable for near real-time inundation monitoring. The distinctly different intensity between water and land makes it adequate for waterbody detection, but the intrinsic speckle noise and variable intensity of SAR images decrease the accuracy of waterbody detection. In this study, we suggest two modules, named 'morphology module' and 'edge-enhanced module', which are the combinations of pooling layers and convolutional layers, improving the accuracy of waterbody detection. The morphology module is composed of min-pooling layers and max-pooling layers, which shows the effect of morphological transformation. The edge-enhanced module is composed of convolution layers, which has the fixed weights of the traditional edge detection algorithm. After comparing the accuracy of various versions of each module for U-Net, we found that the optimal combination is the case that the morphology module of min-pooling and successive layers of min-pooling and max-pooling, and the edge-enhanced module of Scharr filter were the inputs of conv9. This morphologic and edge-enhanced U-Net improved the F1-score by 9.81% than the original U-Net. Qualitative inspection showed that our model has capability of detecting small-sized waterbody and detailed edge of water, which are the distinct advancement of the model presented in this research, compared to the original U-Net.
Journal of the Korea Academia-Industrial cooperation Society
/
v.22
no.4
/
pp.621-628
/
2021
This paper proposes a method to calibrate a thermal camera with three different perspectives. In particular, the intrinsic parameters of the camera and re-projection errors were provided to quantify the accuracy of the calibration result. Three lenses of the camera capture the same image, but they are not overlapped, and the image resolution is worse than the one captured by the RGB camera. In computer vision, camera calibration is one of the most important and fundamental tasks to calculate the distance between camera (s) and a target object or the three-dimensional (3D) coordinates of a point in a 3D object. Once calibration is complete, the intrinsic and the extrinsic parameters of the camera(s) are provided. The intrinsic parameters are composed of the focal length, skewness factor, and principal points, and the extrinsic parameters are composed of the relative rotation and translation of the camera(s). This study estimated the intrinsic parameters of thermal cameras that have three lenses of different perspectives. In particular, image enhancement based on a deep learning algorithm was carried out to improve the quality of the calibration results. Experimental results are provided to substantiate the proposed method.
Jung, Sungho;Oh, Sungryul;Lee, Daeeop;Le, Xuan Hien;Lee, Giha
Journal of Korea Water Resources Association
/
v.54
no.7
/
pp.453-462
/
2021
As the frequency of localized heavy rainfall has increased during recent years, the importance of high-resolution radar data has also increased. This study aims to correct the bias of Dual Polarization radar that still has a spatial and temporal bias. In many studies, various statistical techniques have been attempted to correct the bias of radar rainfall. In this study, the bias correction of the S-band Dual Polarization radar used in flood forecasting of ME was implemented by a Convolutional Autoencoder (CAE) algorithm, which is a type of Convolutional Neural Network (CNN). The CAE model was trained based on radar data sets that have a 10-min temporal resolution for the July 2017 flood event in Cheongju. The results showed that the newly developed CAE model provided improved simulation results in time and space by reducing the bias of raw radar rainfall. Therefore, the CAE model, which learns the spatial relationship between each adjacent grid, can be used for real-time updates of grid-based climate data generated by radar and satellites.
Korean Journal of Construction Engineering and Management
/
v.23
no.3
/
pp.45-55
/
2022
BIM models allow building spaces to be instantiated and recognized as unique objects independently of model elements. These instantiated spaces provide the required semantics that can be leveraged for building code checking, energy analysis, and evacuation route analysis. However, theses spaces or rooms need to be designated manually, which in practice, lead to errors and omissions. Thus, most BIM models today does not guarantee the semantic integrity of space designations, limiting their potential applicability. Recent studies have explored ways to automate space allocation in BIM models using artificial intelligence algorithms, but they are limited in their scope and relatively low classification accuracy. This study explored the use of Graph Convolutional Networks, an algorithm exclusively tailored for graph data structures. The goal was to utilize not only geometry information but also the semantic relational data between spaces and elements in the BIM model. Results of the study confirmed that the accuracy was improved by about 8% compared to algorithms that only used geometric distinctions of the individual spaces.
Kang, Jungyu;Song, Yoo-Seung;Min, Kyoung-Wook;Choi, Jeong Dan
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.21
no.5
/
pp.274-286
/
2022
Multi-object tracking has been studied for a long time under computer vision and plays a critical role in applications such as autonomous driving and driving assistance. Multi-object tracking techniques generally consist of a detector that detects objects and a tracker that tracks the detected objects. Various publicly available datasets allow us to train a detector model without much effort. However, there are relatively few publicly available datasets for training a tracker model, and configuring own tracker datasets takes a long time compared to configuring detector datasets. Hence, the detector is often developed separately with a tracker module. However, the separated tracker should be adjusted whenever the former detector model is changed. This study proposes a system that can train a model that performs detection and tracking simultaneously using only the detector training datasets. In particular, a Siam network with augmentation is used to compose the detector and tracker. Experiments are conducted on public datasets to verify that the proposed algorithm can formulate a real-time multi-object tracker comparable to the state-of-the-art tracker models.
Carbon neutrality is the concept of reducing greenhouse gases emitted by human activities and making actual emissions zero through removal of remaining gases. It is also called "Net-Zero" and "carbon zero". Korea has declared a "2050 Carbon Neutrality policy" to cope with the climate change crisis. Various carbon reduction legislative processes are underway. Since carbon neutrality requires changes in industrial technology, it is important to prepare a system for carbon zero. This paper aims to understand the status and trends of global carbon neutrality technology. Therefore, ROK's web platform "www.naver.com." was selected as the data collection scope. Korean online articles related to carbon neutrality were collected. Carbon neutrality technology trends were analyzed by future signal methodology and Word2Vec algorithm which is a neural network deep learning technology. As a result, technology advancement in the steel and petrochemical sectors, which are carbon over-release industries, was required. Investment feasibility in the electric vehicle sector and technology advancement were on the rise. It seems that the government's support for carbon neutrality and the creation of global technology infrastructure should be supported. In addition, it is urgent to cultivate human resources, and possible to confirm the need to prepare support policies for carbon neutrality.
Style transfer based on neural network provides very high quality results by reflecting the high level structural characteristics of images, and thereby has recently attracted great attention. This paper deals with the problem of resolution limitation due to GPU memory in performing such neural style transfer. We can expect that the gradient operation for style transfer based on partial image, with the aid of the fixed size of receptive field, can produce the same result as the gradient operation using the entire image. Based on this idea, each component of the style transfer loss function is analyzed in this paper to obtain the necessary conditions for partitioning and padding, and to identify, among the information required for gradient calculation, the one that depends on the entire input. By structuring such information for using it as auxiliary constant input for partition-based gradient calculation, this paper develops a recursive algorithm for super high-resolution image style transfer. Since the proposed method performs style transfer by partitioning input image into the size that a GPU can handle, it can perform style transfer without the limit of the input image resolution accompanied by the GPU memory size. With the aid of such super high-resolution support, the proposed method can provide a unique style characteristics of detailed area which can only be appreciated in super high-resolution style transfer.
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.291-291
/
2020
제주도는 강수의 지표침투성이 좋은 화산섬의 지질특성상 지표수의 개발이용여건이 취약한 관계로 용수의 대부분을 지하수에 의존하고 있다. 따라서 제주도는 정책 및 연구적으로 오랜 기간동안 지하수의 보전관리에 많은 노력을 기울여 오고 있다. 하지만 최근 기후변화로 인한 강수의 변동성 증가로 인해 지하수위의 변동성 또한 증가할 가능성이 있으며 따라서 지하수위의 급격한 하강에 대비하여 지하수위의 예측 및 지하수 취수량 관리의 필요성이 요구되고 있다. 지하수에 절대적으로 의존하고 있는 제주도의 수자원 이용 여건을 고려할 때, 지하수의 취수량 관리를 위한 지하수위의 실시간 예측이 필요한 실정이다. 하지만 기존의 예측방법에 의한 제주도 지하수위 예측기간은 충분히 길지 않으며 예측기간이 길어지면 예측성능이 낮아지는 문제점이 있었다. 본 연구에서는 이러한 단점을 보완하기 위해 딥러닝 알고리즘인 Long Short Term Memory(LSTM)를 활용하여 제주도 남동쪽 표선유역 중산간지역의 1개 지하수위 관측정에 대해 지하수위를 예측하고 분석하였다. R 기반의 Keras 패키지에 있는 LSTM 알고리즘을 사용하였고, 입력자료는 인근의 성판악 및 교래 강우관측소의 일단위 강수량자료와 인근 취수정의 지하수 취수량자료 및 연구대상 관측정의 지하수위 자료를 사용하였으며, 사용된 자료의 기간은 2001년 2월 11일부터 2019년 10월 31일까지 이다. 2001년부터 13년의 보정 및 3년의 검증용 시계열자료를 사용하여 매개변수의 보정 및 과적합을 방지하였고, 3년의 예측용 시계열자료를 사용하여 LSTM 알고리즘의 예측성능을 평가하였다. 목표 예측일수는 1일, 10일, 20일, 30일로 설정하였으며 보정, 검증 및 예측기간에 대한 모의결과의 평가지수로는 Nash-Sutcliffe Efficiency(NSE)를 활용하였다. 모의결과, 보정, 검증 및 예측기간에 대한 1일 예측의 NSE는 각각 0.997, 0.997, 0.993 이었고, 10일 예측의 NSE는 각각 0.993, 0.912, 0.930 이었다. 20일 예측의 경우 NSE는 각각 0.809, 0.781, 0.809 이었으며 30일 예측의 경우 각각 0.677, 0.622, 0.633 이었다. 이것은 LSTM 알고리즘에 의한 10일 예측까지는 관측 지하수위 시계열자료를 매우 적절히 모의할 수 있다는 것을 의미하며, 20일 예측 또한 적절히 모의할 수 있다는 것을 의미한다. 따라서 LSTM 알고리즘을 활용하면 본 연구대상지점에 대한 2주일 또는 3주일의 안정적인 지하수위 예보가 가능하다고 판단된다. 또한 LSTM 알고리즘을 통한 실시간 지하수위 예측은 지하수 취수량 관리에 활용할 수 있을 것이다.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.246-246
/
2021
본 연구는 강우 발생시 유량을 추정하는 것에 목적이 있다. 이를 위해 본 연구는 선행연구의 모형 개발방법론에서 벗어나 딥러닝 알고리즘 중 하나인 합성곱 신경망 (convolution neural network)과 수문학적 이미지 (hydrological image)를 이용하여 강우 발생시 유량을 추정하였다. 합성곱 신경망은 일반적으로 분류 문제 (classification)을 해결하기 위한 목적으로 개발되었기 때문에 불특정 연속변수인 유량을 모의하기에는 적합하지 않다. 이를 위해 본 연구에서는 합성곱 신경망의 완전 연결층 (Fully connected layer)를 개선하여 연속변수를 모의할 수 있도록 개선하였다. 대부분 합성곱 신경망은 RGB (red, green, blue) 사진 (photograph)을 이용하여 해당 사진이 나타내는 것을 예측하는 목적으로 사용하지만, 본 연구의 경우 일반 RGB 사진을 이용하여 유출량을 예측하는 것은 경험적 모형의 전제(독립변수와 종속변수의 관계)를 무너뜨리는 결과를 초래할 수 있다. 이를 위해 본 연구에서는 임의의 유역에 대해 2차원 공간에서 무차원의 수문학적 속성을 갖는 grid의 집합으로 정의되는 수문학적 이미지는 입력자료로 활용했다. 합성곱 신경망의 구조는 Convolution Layer와 Pulling Layer가 5회 반복하는 구조로 설정하고, 이후 Flatten Layer, 2개의 Dense Layer, 1개의 Batch Normalization Layer를 배열하고, 다시 1개의 Dense Layer가 이어지는 구조로 설계하였다. 마지막 Dense Layer의 활성화 함수는 분류모형에 이용되는 softmax 또는 sigmoid 함수를 대신하여 회귀모형에서 자주 사용되는 Linear 함수로 설정하였다. 이와 함께 각 층의 활성화 함수는 정규화 선형함수 (ReLu)를 이용하였으며, 모형의 학습 평가 및 검정을 판단하기 위해 MSE 및 MAE를 사용했다. 또한, 모형평가는 NSE와 RMSE를 이용하였다. 그 결과, 모형의 학습 평가에 대한 MSE는 11.629.8 m3/s에서 118.6 m3/s로, MAE는 25.4 m3/s에서 4.7 m3/s로 감소하였으며, 모형의 검정에 대한 MSE는 1,997.9 m3/s에서 527.9 m3/s로, MAE는 21.5 m3/s에서 9.4 m3/s로 감소한 것으로 나타났다. 또한, 모형평가를 위한 NSE는 0.7, RMSE는 27.0 m3/s로 나타나, 본 연구의 모형은 양호(moderate)한 것으로 판단하였다. 이에, 본 연구를 통해 제시된 방법론에 기반을 두어 CNN 모형 구조의 확장과 수문학적 이미지의 개선 또는 새로운 이미지 개발 등을 추진할 경우 모형의 예측 성능이 향상될 수 있는 여지가 있으며, 원격탐사 분야나, 위성 영상을 이용한 전 지구적 또는 광역 단위의 실시간 유량 모의 분야 등으로의 응용이 가능할 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.