• Title/Summary/Keyword: deep tunnel

Search Result 339, Processing Time 0.021 seconds

Behavior of braced wall due to distance between tunnel and wall in excavation of braced wall nearby tunnel (터널에 인접한 흙막이굴착 시 터널 이격거리에 따른 거동특성)

  • Ahn, Sung Joo;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.657-669
    • /
    • 2018
  • In recent years, the development of complex urban areas has become saturated and much attention has been focused on the development of underground space, and deep excavation is frequently performed in order to increase the utilization of underground space due to the enlargement of buildings and the high rise of buildings. Therefore, in this study, we tried to understand the behavior of the braced wall and the behavior of the tunnel adjacent to the wall according to the stiffness of the wall and the distance between the tunnel and wall. As a result of the study, the deformation of the braced wall tended to decrease with increasing the stiffness of the wall, and the axial force acting on the struts was also different according to the stiffness of braced wall. When the stiffness of the braced wall is small (2 mm), the point at which the axial force of the braces maximizes is near 0.3H of the wall. When the stiffness of the braced wall is large (5 mm), the axial force is maximum at around 0.7H of the wall. Also, the tunnel convergence occurred more clearly when the separation distance from the braced wall was closer, the stiffness of the wall was smaller, and the tunnel convergence was concentrated to the lower right part. The ground settlement due to the excavation of the ground tended to decrease as the distance between tunnel and braced wall was closer to that of the tunnel, which is considered to be influenced by the stiffness of the tunnel.

Compression Neuropathy (압박성 신경병증)

  • Kim, Byung-Sung
    • The Journal of Korean Orthopaedic Ultrasound Society
    • /
    • v.1 no.2
    • /
    • pp.128-133
    • /
    • 2008
  • Nerve compression is caused by external force or internal pathology, which symptom develops along nerve distribution. There are median, ulnar and radial nerve compression neuropathies below elbow. Carpal tunnel syndrome at the flexor retinaculum is most common among all the entrapment neuropathies. Other causes of median nerve neuropathy include Struther's ligament, biceps aponeurosis, pronator teres, FDS aponeurosis and aberrant muscles, which induce pronator syndrome or anterior interosseous nerve syndrome. Ulnar nerve can be compressed at the elbow by arcade of Struther, medial epicondylar groove, FCU two heads, which develops cubital tunnel syndrome, at the wrist by ganglion, fracture of hamate hook and vascular problem, which develops Guyon's canal syndrome. Radial tunnel syndrome is caused by supinator muscle, which compresses its deep branch. Treatment is conservative at initial stage like NSAID, night splint or steroid injection. If symptom persists, operative treatment should be considered after electrodiagnostic or imaging studies.

  • PDF

The appropriate shape of the boundary transition section for a mountain-gorge terrain model in a wind tunnel test

  • Hu, Peng;Li, Yongle;Huang, Guoqing;Kang, Rui;Liao, Haili
    • Wind and Structures
    • /
    • v.20 no.1
    • /
    • pp.15-36
    • /
    • 2015
  • Characterization of wind flows over a complex terrain, especially mountain-gorge terrain (referred to as the very complex terrain with rolling mountains and deep narrow gorges), is an important issue for design and operation of long-span bridges constructed in this area. In both wind tunnel testing and numerical simulation, a transition section is often used to connect the wind tunnel floor or computational domain bottom and the boundary top of the terrain model in order to generate a smooth flow transition over the edge of the terrain model. Although the transition section plays an important role in simulation of wind field over complex terrain, an appropriate shape needs investigation. In this study, two principles for selecting an appropriate shape of boundary transition section were proposed, and a theoretical curve serving for the mountain-gorge terrain model was derived based on potential flow theory around a circular cylinder. Then a two-dimensional (2-D) simulation was used to compare the flow transition performance between the proposed curved transition section and the traditional ramp transition section in a wind tunnel. Furthermore, the wind velocity field induced by the curved transition section with an equivalent slope of $30^{\circ}$ was investigated in detail, and a parameter called the 'velocity stability factor' was defined; an analytical model for predicting the velocity stability factor was also proposed. The results show that the proposed curved transition section has a better flow transition performance compared with the traditional ramp transition section. The proposed analytical model can also adequately predict the velocity stability factor of the wind field.

Assessment of Tunnel Collapse Load by Closed-Form Analytical Solution and Finite Element Analysis (근사적인 해석법과 유한요소해석에 의한 터널붕괴하중 평가)

  • Lee, Yong-Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.185-197
    • /
    • 2007
  • Limit analysis of upper and lower bound solutions has been well developed to provide the stability numbers for shallow tunnels in cohesive soil ($c_u$ material), cohesive-frictional soil (c'-$\phi$' material) and cohesionless soil ($\phi$'material). However, an extension of these methods to relatively deep circular tunnels in the cohesionless soil has been explored rarely to date. For this reason, the closed-form analytical solutions including lower bound solution based on the stress discontinuity concept and upper bound solution based on the kinematically admissible failure mechanism were proposed for assessing tunnel collapse load in this study. Consequently, the tunnel collapse load from those solutions was compared with both the finite element analysis and the previous analytical bound solutions and shown to be in good agreement with the FE results, in particular with the FE soil elements located on the horizontal tunnel axis.

An improved radius-incremental-approach of stress and displacement for strain-softening surrounding rock considering hydraulic-mechanical coupling

  • Zou, Jin-Feng;Wei, Xing-Xing
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.59-69
    • /
    • 2018
  • This study focused on the mechanical and hydraulic characteristics of underwater tunnels based on Mohr-Coulomb (M-C), Hoek-Brown (H-B) and generalized H-B failure criteria. An improved approach for calculating stress, displacement and plastic radius of the circular tunnel considering hydraulic-mechanical coupling was developed. The innovation of this study was that the radius-incremental-approach was reconstructed (i.e., the whole plastic zone is divided into a finite number of concentric annuli by radius), stress and displacement of each annulus were determined in terms of numerical method and Terzaghi's effective stress principle. The validation of the proposed approach was conducted by comparing with the results in Brown and Bray (1982) and Park and Kim (2006). In addition, the Rp-pin curve (plastic radius-internal supporting pressure curve) was obtained using the numerical iterative method, and the plastic radius of the deep-buried tunnel could be obtained by interpolation method in terms of the known value of internal supporting pressure pin. Combining with the theories in Carranza and Fairhurst (2000), the improved technique for assessing the reliability of the tunnel support was proposed.

Study on the Generation of Turbulent Boundary Layer in Wind Tunnel and the Effect of Aspect Ratio of a Rectangular Obstacle (풍동 내 난류 경계층 생성과 육면체의 형상 변화에 따른 표면 압력 변화 연구)

  • LimM, Hee-Chang;Jeong, Tae-Yoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.10
    • /
    • pp.791-799
    • /
    • 2008
  • We investigate the flow characteristics around a series of rectangular bodies ($40^d{\times}80^w{\times}80^h$, $80^d{\times}80^w{\times}80^h$ and $160^d{\times}80^w{\times}80^h$) placed in a deep turbulent boundary layer. The study is aiming to understand the surface pressure distribution around the bodies such as the suction pressure in the leading edge, when the flow is normal, which is responsible for producing extreme suction pressures on the roof. The experiment includes wind tunnel work by using HWA (Hot-Wire anemometry) and pressure transducers. The experiments are carried out at three different Reynolds numbers, based on the velocity U at the body height h, of $2.4{\times}10^4$, $4.6{\times}10^4$ and $6.7{\times}10^4$, and large enough that the mean flow is effectively Reynolds number independent. The results include the measurements of the growth of the turbulent boundary layer in the wind tunnel and the surface pressure around the bodies.

Prediction of aerodynamic coefficients of streamlined bridge decks using artificial neural network based on CFD dataset

  • Severin Tinmitonde;Xuhui He;Lei Yan;Cunming Ma;Haizhu Xiao
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.423-434
    • /
    • 2023
  • Aerodynamic force coefficients are generally obtained from traditional wind tunnel tests or computational fluid dynamics (CFD). Unfortunately, the techniques mentioned above can sometimes be cumbersome because of the cost involved, such as the computational cost and the use of heavy equipment, to name only two examples. This study proposed to build a deep neural network model to predict the aerodynamic force coefficients based on data collected from CFD simulations to overcome these drawbacks. Therefore, a series of CFD simulations were conducted using different geometric parameters to obtain the aerodynamic force coefficients, validated with wind tunnel tests. The results obtained from CFD simulations were used to create a dataset to train a multilayer perceptron artificial neural network (ANN) model. The models were obtained using three optimization algorithms: scaled conjugate gradient (SCG), Bayesian regularization (BR), and Levenberg-Marquardt algorithms (LM). Furthermore, the performance of each neural network was verified using two performance metrics, including the mean square error and the R-squared coefficient of determination. Finally, the ANN model proved to be highly accurate in predicting the force coefficients of similar bridge sections, thus circumventing the computational burden associated with CFD simulation and the cost of traditional wind tunnel tests.

한반도 기후 변화에 따른 수해 및 빗물 저류터널(Flood Drainage Tunnel) 건설의 세계 동향 검토 연구

  • Choe, Jae-Hwa;Ji, Wang-Ryul
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.14 no.2
    • /
    • pp.31-37
    • /
    • 2012
  • In the circumstances being continuous the unusual weather in the world, the city of Seoul has been devastating flood damage in July 2011, because of the heavy rainfalls. Along with expensive repairs to property, thousands of flood victims occurred; it is difficult to estimate the direct and indirect economic damages in city. Recently, as a part of the flood protecting measures, there are being discussed about the deep underground flood drainage tunnel, underground regulating reservoirs, permeable pavement, infiltration facility, river improvements, diversion channel, sewer pipe and ditch improvement and so on. Therefore, it is useful to make the plan of flood protecting measures more and more cost-effective and rational methods by considering the similar flood measures and constructions in the mega cities like Seoul.

  • PDF

Rock Mechanics Advances for Underground Construction in Civil Engineering and Mining

  • Kaiser, Peter K.;Kim, Bo-Hyun
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2008.10a
    • /
    • pp.3-16
    • /
    • 2008
  • The underground construction and mining are facing many geomechanics challenges stemming from, geological complexities and stress-driven rock mass degradation processes. Brittle failing rock at depth poses unique problems as stress-driven failure processes often dominate the tunnel behaviour. Such failure processes can lead to shallow unravelling or strainbursting modes of instability that cause difficult conditions for tunnel contractors. This keynote address focuses on the challenge of anticipating the actual behaviour of brittle rocks in laboratory testing, for empirical rock mass strength estimation, and by back-analysis of field observations. This paper summarizes lessons learned during the construction of deep Alpine tunnels and highlights implications that are of practical importance with respect to constructability. It builds on a recent presentation made at the $1^{st}$ Southern Hemisphere International Rock Mechanics Symposium held in Perth, Australia, in September this year, and includes results from recent developments.

  • PDF

Article - 환기.방재측면에서의 초장대.대심도 터널에 관한 고찰

  • Lee, Hang
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • s.54
    • /
    • pp.41-55
    • /
    • 2011
  • The current railway projects under plan, design, or construction have been designed as 'very long and deep underground tunnel'. Therefore, it is reasonable that the standards for preventing disaster in such conditions should be intensified in order to avoid repeating the same failure which happened in Daegu subway disaster, Although we consent to the opinion that nothing can compete with human being's life, it is very difficult to protect the life from all of potential disasters perfectly in railway fields because the excessive standards can result in excess construction cost, which can bring about cancelation of the project itself eventually. Therefore optimized disaster design standard is required to negotiate the conflict between economical cost and social tolerance limitation simultaneously.

  • PDF