Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.165-165
/
2023
Streamflow prediction is a critical task in water resources management and essential for planning and decision-making purposes. However, the streamflow prediction is challenging due to the complexity and non-linear nature of hydrological processes. The transfer learning is a powerful technique that enables a model to transfer knowledge from a source domain to a target domain, improving model performance with limited data in the target domain. In this study, we apply the transfer learning using the Informer model, which is a state-of-the-art deep learning model for streamflow prediction. The model was trained on a large-scale hydrological dataset in the source basin and then fine-tuned using a smaller dataset available in the target basin to predict the streamflow in the target basin. The results demonstrate that transfer learning using the Informer model significantly outperforms the traditional machine learning models and even other deep learning models for streamflow prediction, especially when the target domain has limited data. Moreover, the results indicate the effectiveness of streamflow prediction when knowledge transfer is used to improve the generalizability of hydrologic models in data-sparse regions.
In this paper, a method for improving the defect classification performance in low contrast, ununiformity and featureless steel plate surfaces has been studied based on deep convolution neural network and transfer-learning neural network. The steel plate surface images have low contrast, ununiformity, and featureless, so that the contrast between defect and defect-free regions are not discriminated. These characteristics make it difficult to extract the feature of the surface defect image. A classifier based on a deep convolution neural network is constructed to extract features automatically for effective classification of images with these characteristics. As results of the experiment, AlexNet-based transfer-learning classifier showed excellent classification performance of 99.43% with less than 160 seconds of training time. The proposed classification system showed excellent classification performance for low contrast, ununiformity, and featureless surface images.
To generate a deep learning model with high performance, a large training dataset should be required. However, it requires a lot of time and cost to generate a large training dataset in remote sensing. Therefore, the importance of transfer learning of deep learning model using a small dataset have been increased. In this paper, we performed transfer learning of trained model based on open datasets by using orthoimages and digital maps to detect changes of building objects in multitemporal orthoimages. For this, an initial training was performed on open dataset for change detection through the HRNet-v2 model, and transfer learning was performed on dataset by orthoimages and digital maps. To analyze the effect of transfer learning, change detection results of various deep learning models including deep learning model by transfer learning were evaluated at two test sites. In the experiments, results by transfer learning represented best accuracy, compared to those by other deep learning models. Therefore, it was confirmed that the problem of insufficient training dataset could be solved by using transfer learning, and the change detection algorithm could be effectively applied to various remote sensed imagery.
Journal of Korea Society of Digital Industry and Information Management
/
v.19
no.3
/
pp.245-251
/
2023
Facial expression recognition plays a significant role in understanding human emotional states. With the advancement of AI and computer vision technologies, extensive research has been conducted in various fields, including improving customer service, medical diagnosis, and assessing learners' understanding in education. In this study, we develop a model that can infer emotions in real-time from a webcam using transfer learning with TensorFlow.js and MobileNet. While existing studies focus on achieving high accuracy using deep learning models, these models often require substantial resources due to their complex structure and computational demands. Consequently, there is a growing interest in developing lightweight deep learning models and transfer learning methods for restricted environments such as web browsers and edge devices. By employing MobileNet as the base model and performing transfer learning, our study develops a deep learning transfer model utilizing JavaScript-based TensorFlow.js, which can predict emotions in real-time using facial input from a webcam. This transfer model provides a foundation for implementing facial expression recognition in resource-constrained environments such as web and mobile applications, enabling its application in various industries.
Deep artificial neural network with transfer learning is applied to compressed sensing cardiovascular MRI. Transfer learning is a method that utilizes structure, filter kernels, and weights of the network used in prior learning for current learning or application. The transfer learning is useful in accelerating learning speed, and in generalization of the neural network when learning data is limited. From a cardiac MRI experiment, with 8 healthy volunteers, the neural network with transfer learning was able to reduce learning time by a factor of more than five compared to that with standalone learning. Using test data set, reconstructed images with transfer learning showed lower normalized mean square error and better image quality compared to those without transfer learning.
As the number of IOT devices is growing rapidly, various 'see-thru connection' techniques have been reported for efficient communication with them. In this paper, we propose a deep learning based IOT device recognition system for interaction with these devices. The overall system consists of a TensorFlow based deep learning server and two Android apps for data collection and recognition purposes. As the basic neural network model, we adopted Google's inception-v3, and modified the output stage to classify 20 types of IOT devices. After creating a data set consisting of 1000 images of 20 categories, we trained our deep learning network using a transfer learning technology. As a result of the experiment, we achieve 94.5% top-1 accuracy and 98.1% top-2 accuracy.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2018.10a
/
pp.178-179
/
2018
Recently, methods of using machine learning in artificial intelligence such as autonomous navigation and speech recognition have been actively studied. Classical image processing methods such as classical boundary detection and pattern recognition have many limitations in order to recognize a specific object or area in a digital image. However, when a machine learning method such as deep-learning is used, Can be obtained. However, basically, a large amount of learning data must be secured for machine learning such as deep-learning. Therefore, it is difficult to apply the machine learning for area classification when the amount of data is very small, such as aerial photographs for environmental analysis. In this study, we apply a transfer-learning technique that can be used when the dataset size of the input image is small and the shape of the input image is not included in the category of the training dataset.
Journal of the Korea Society of Computer and Information
/
v.25
no.3
/
pp.27-32
/
2020
In this paper, we propose an algorithm to measure the accumulated status of scrap boxes where metal scraps are accumulated. The accumulated status measuring is defined as a multi-class classification problem, and the method with deep learning classify the accumulated status using only the scrap box image. The learning was conducted by the Transfer Learning method, and the deep learning model was NASNet-A. In order to improve the accuracy of the model, we combined the Random Forest classifier with the trained NASNet-A and improved the model through post-processing. Testing with 4,195 data collected in the field showed 55% accuracy when only NASNet-A was applied, and the proposed method, NASNet with Random Forest, improved the accuracy by 88%.
Traditional manual identification of crop leaf diseases is challenging. Owing to the limitations in manpower and resources, it is challenging to explore crop diseases on a large scale. The emergence of artificial intelligence technologies, particularly the extensive application of deep learning technologies, is expected to overcome these challenges and greatly improve the accuracy and efficiency of crop disease identification. Crop leaf disease identification models have been designed and trained using large-scale training data, enabling them to predict different categories of diseases from unlabeled crop leaves. However, these models, which possess strong feature representation capabilities, require substantial training data, and there is often a shortage of such datasets in practical farming scenarios. To address this issue and improve the feature learning abilities of models, this study proposes a deep transfer learning adaptation strategy. The novel proposed method aims to transfer the weights and parameters from pre-trained models in similar large-scale training datasets, such as ImageNet. ImageNet pre-trained weights are adopted and fine-tuned with the features of crop leaf diseases to improve prediction ability. In this study, we collected 16,060 crop leaf disease images, spanning 12 categories, for training. The experimental results demonstrate that an impressive accuracy of 98% is achieved using the proposed method on the transferred ResNet-50 model, thereby confirming the effectiveness of our transfer learning approach.
The Journal of the Convergence on Culture Technology
/
v.9
no.3
/
pp.845-850
/
2023
In this paper, we propose a method for diagnosing ball bearing vibration using transfer learning. STFT, which can analyze vibration signals in time-frequency, was used as input to CNN to diagnose failures. In order to rapidly learn CNN-based deep artificial neural networks and improve diagnostic performance, we proposed a transfer learning-based deep learning learning technique. For transfer learning, the feature extractor and classifier were selectively learned using a VGG-based image classification model, the data set for learning was publicly available ball bearing vibration data provided by Case Western Reserve University, and performance was evaluated by comparing the proposed method with the existing CNN model. Experimental results not only prove that transfer learning is useful for condition diagnosis in ball bearing vibration data, but also allow other industries to use transfer learning to improve condition diagnosis.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.