• Title/Summary/Keyword: deep seawaters

Search Result 5, Processing Time 0.02 seconds

Comparison of Bacterial Diversity in the Water Columns of Goseong Deep Seawaters (고성 심해에서 수심에 따른 해양미생물의 다양성 비교)

  • Khang, Yongho
    • Korean Journal of Microbiology
    • /
    • v.49 no.3
    • /
    • pp.282-285
    • /
    • 2013
  • Microbial diversities in the 300 m and 500 m deep seawaters near Goseong, Gangwon Province (South Korea), were investigated. Pyrosequencing of 16S rRNA genes of marine microbes resulted in 19,474 reads from the 300 m deep seawaters, which consisted of Alphaproteobacteria (57.41%) and Gammaproteobacteria (38.85%), and 82,806 reads from the 500 m deep seawaters, which consisted of Gammaproteobacteria (99.64%) mostly. Rhodobacterales (57.31%) were dominant in the 300 m deep seawaters, but Alteromonadales (45.65%) and Oceanospirillales (34.61%) were dominant in the 500 m deep seawaters. On the bases of operational taxonomic units and diversity indexes (Shannon and Simpson), biodiversity of marine bacteria in the 500 m deep seawaters was shown to be higher than that in the 300 m deep seawaters.

Bacterial Communities from the Water Column and the Surface Sediments along a Transect in the East Sea

  • Lee, Jeong-Kyu;Choi, Keun-Hyung
    • Journal of Marine Life Science
    • /
    • v.6 no.1
    • /
    • pp.9-22
    • /
    • 2021
  • We determined the composition of water and sediment bacterial assemblages from the East Sea using 16S rRNA gene sequencing. Total bacterial reads were greater in surface waters (<100 m) than in deep seawaters (>500 m) and sediments. However, total OTUs, bacterial diversity, and evenness were greater in deep seawaters than in surface waters with those in the sediment comparable to the deep sea waters. Proteobacteria was the most dominant bacterial phylum comprising 67.3% of the total sequence reads followed by Bacteriodetes (15.8%). Planctomycetes, Verrucomicrobia, and Actinobacteria followed all together consisting of only 8.1% of the total sequence. Candidatus Pelagibacter ubique considered oligotrophic bacteria, and Planctomycetes copiotrophic bacteria showed an opposite distribution in the surface waters, suggesting a potentially direct competition for available resources by these bacteria with different traits. The bacterial community in the warm surface waters were well separated from the other deep cold seawater and sediment samples. The bacteria exclusively associated with deep sea waters was Actinobacteriacea, known to be prevalent in the deep photic zone. The bacterial group Chromatiales and Lutibacter were those exclusively associated with the sediment samples. The overall bacterial community showed similarities in the horizontal rather than vertical direction in the East Sea.

Activity Concentrations of 137Cs and 90Sr in Seawaters of East Sea, Korea

  • Lee, Hae Young;Kim, Wan;Kim, Yong-Hwan;Maeng, Seongjin;Lee, Sang Hoon
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.268-273
    • /
    • 2016
  • Background: This study was a long-term evaluation of $^{137}Cs$ and $^{90}Sr$ activity concentrations in seawater samples from the East Sea, Korea, in order to establish current activity levels. Results and long-term monitoring trends will be useful in the future monitoring of environmental radioactivity. Materials and Methods: Surface seawater samples were collected quarterly from Guryongpo and Jangho in the East Coast between 1998 and 2010 and the quarterly deep seawater samples were collected from three sites in the sea adjacent to Ulleung-do between 2012 and 2015. The activity concentrations of $^{137}Cs$ were measured using a gamma-spectrometer. The activity concentrations of $^{90}Sr$ and $^{90}Y$ in a radioactive equilibrium state were measured using a gas flow proportional counter. Results and Discussion: We found the annual average activity concentrations of $^{137}Cs$ in the surface seawater was $1.66-2.89mBq{\cdot}kg^{-1}$ in Guryongpo and $1.68-2.43mBq{\cdot}kg^{-1}$ in Jangho. The annual average activity concentrations of $^{90}Sr$ in the surface seawater was $0.83-1.98mBq{\cdot}kg^{-1}$ in Guryongpo and $0.82-1.57mBq{\cdot}kg^{-1}$ in Jangho. The annual average activity concentrations of $^{137}Cs$ in the deep seawater sites were $1.51-1.73mBq{\cdot}kg^{-1}$, $1.19-1.60mBq{\cdot}kg^{-1}$ and $0.87-1.15mBq{\cdot}kg^{-1}$ in TH, JD, and HP. The annual average activity concentrations of $^{90}Sr$ in the same deep seawater sites were $1.00-1.94mBq{\cdot}kg^{-1}$, $0.82-1.26mBq{\cdot}kg^{-1}$, and $0.79-1.32mBq{\cdot}kg^{-1}$. The effective half-life was calculated by analyzing change over time in the activity concentration in the surface seawater. The effective half-life of $^{137}Cs$ was $15.3{\pm}0.1years$ in Guryongpo and $102{\pm}3years$ in Jangho. The effective half-life of $^{90}Sr$ was $28.3{\pm}4.3years$ in Guryongpo and $16.6{\pm}0.1years$ in Jangho. The ratio of the average activity concentration ($^{137}Cs/^{90}Sr$) was 1.72 in the surface seawater, which is similar to the reported ratio of the global radioactive fallout. The ratio in the deep seawater was 1.24, which is somewhat low compared to the global ratio (1.6, 1.8). Conclusion: Activity concentrations of $^{137}Cs$ and $^{90}Sr$ in the seawaters of the East Sea were similar to the previously reported activity levels in the East Sea and northwestern Pacific as a result of global radioactive fallout following atmospheric nuclear weapon tests.

Effect of Freshwater Discharge on the Seawater Quality (Nutrients, Organic Materials and Trace Metals) in Cheonsu Bay (여름철 천수만 해수에서 담수 대량 방류에 따른 영양염, 유기물 및 미량금속의 변화)

  • LEE, JI-YOON;CHOI, MAN-SIK;SONG, YUNHO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.4
    • /
    • pp.519-534
    • /
    • 2019
  • When the fresh water from the artificial lakes (Ganwolho and Bunamho) were discharged to Cheonsu Bay in summer to prevent the flood over the reclaimed farmland near the lakes, the impact on water qualities (nutrients, organic matters, trace metals) within the bay was investigated through four surveys (June, July, August and October, 2011). Dissolved inorganic nitrogen (DIN) increased about as much as 3-4 times over the whole water column when the freshwater was discharged. And the main species composition of DIN changed from ammonia to nitrate. Dissolved inorganic phosphorus (DIP) decreased as much as 2 times in surface waters, but increased as much as 1.5 times in deep waters, and also silicate concentrations increased as much as 3-4 times in deep waters of the inner bay. The N/P ratios in Chunsu bay seawaters were much higher (2 to 7 times) than the Redfield ratio when the freshwaters were discharged, which indicated the phosphorus limiting in the phytoplankton growth. Dissolved organic carbon (DOC) and nitrogen (DON) increased as much as about 2 times. In addition, particulate organic matters (POC, PON, POP, Bio-Si) increased as much as above 2 times in the surface waters of the inner bay. Trace metals (Fe, Mn, Co, Ni, Cu) increased in the surface waters of the inner bay, but dissolved Cd concentrations decreased as much as 2 times. Therefore, when the contaminated fresh waters from the artificial lakes were discharged into the bay, nutrients, organic matters and trace metals generally increased compared to normal period. Since the phytoplankton bloom occurred in the surface waters of the inner bay, dissolved oxygens at the surface waters were oversaturated and hence hypoxic in the deep waters. Highly enriched nutrients concentrations were found in deep waters of the inner bay, which was accompanied with the hypoxic condition. Finally, the water quality in the inner bay of the Chunsu bay was deteriorated from less than grade 3 in normal periods to grade 5 when the freshwaters from the artificial lakes were discharged in summer.

Estimation of POC Export Fluxes Using 234Th/238U Disequilibria in the Amundsen Sea, Antarctica; Preliminary Result (남극 아문젠해에서 234Th/238U 비평형법을 사용한 유광대에서 심층으로의 입자상 유기탄소 침강플럭스 추정; 예비결과)

  • Kim, Mi Seon;Choi, Man Sik;Lee, Sang Heon;Lee, Sang Hoon;Rhee, Tae Siek;Hahm, Doshik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.2
    • /
    • pp.109-124
    • /
    • 2014
  • In order to understand the carbon cycle in the Amundsen Sea of the Southern Ocean, the export fluxes of particulate organic carbon from the euphotic zone to deep water estimated using ${\psi}$/${\psi}$ disequilibrium method. Seawaters in 14 water columns were collected during February and March 2012, and analyzed for total and dissolved ${\psi}$, and particulate organic carbon. Total ${\psi}$ activities in the water column showed deficiency and excess relative to those of ${\psi}$ depending on the water depth. Deficiency of total ${\psi}$ in the euphotic zone showed mirror images both with chlorophyll-a and fluorescence, and was consistent with the loss of nitrate, which indicated the effect of biological activity. In addition, deficiency of total ${\psi}$ from deep water was associated with the increase of total dissolvable Fe/Mn concentration. Excess total ${\psi}$ activity presented below the euphotic zone might be related to particulate ${\psi}$ concentrated in this water depth. Mean export flux of ${\psi}$ estimated using the steady state model was $867{\pm}246dpmm^{-2}day^{-1}$. Mean export flux of particulate organic carbon, which were estimated by the product of total ${\psi}$ flux and ratio of POC/${\psi}$ ($7.08{\pm}4.27{\mu}molCdpm^{-1}$) in the sinking particles, was $5.9{\pm}3.9mmolCm^{-2}day^{-1}$. These fluxes were similar levels to those in the Weddell Sea during February and March 2008. Export ratios (ThE) relative to the primary production in the euphotic zone were in the range of 3-54% (av. 28%).