• Title/Summary/Keyword: deep neural network filter

Search Result 59, Processing Time 0.025 seconds

Image Filtering Method for an Effective Inverse Tone-mapping (효과적인 역 톤 매핑을 위한 필터링 기법)

  • Kang, Rahoon;Park, Bumjun;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.24 no.2
    • /
    • pp.217-226
    • /
    • 2019
  • In this paper, we propose a filtering method that can improve the results of inverse tone-mapping using guided image filter. Inverse tone-mapping techniques have been proposed that convert LDR images to HDR. Recently, many algorithms have been studied to convert single LDR images into HDR images using CNN. Among them, there exists an algorithm for restoring pixel information using CNN which learned to restore saturated region. The algorithm does not suppress the noise in the non-saturation region and cannot restore the detail in the saturated region. The proposed algorithm suppresses the noise in the non-saturated region and restores the detail of the saturated region using a WGIF in the input image, and then applies it to the CNN to improve the quality of the final image. The proposed algorithm shows a higher quantitative image quality index than the existing algorithms when the HDR quantitative image quality index was measured.

Parallel Network Model of Abnormal Respiratory Sound Classification with Stacking Ensemble

  • Nam, Myung-woo;Choi, Young-Jin;Choi, Hoe-Ryeon;Lee, Hong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.11
    • /
    • pp.21-31
    • /
    • 2021
  • As the COVID-19 pandemic rapidly changes healthcare around the globe, the need for smart healthcare that allows for remote diagnosis is increasing. The current classification of respiratory diseases cost high and requires a face-to-face visit with a skilled medical professional, thus the pandemic significantly hinders monitoring and early diagnosis. Therefore, the ability to accurately classify and diagnose respiratory sound using deep learning-based AI models is essential to modern medicine as a remote alternative to the current stethoscope. In this study, we propose a deep learning-based respiratory sound classification model using data collected from medical experts. The sound data were preprocessed with BandPassFilter, and the relevant respiratory audio features were extracted with Log-Mel Spectrogram and Mel Frequency Cepstral Coefficient (MFCC). Subsequently, a Parallel CNN network model was trained on these two inputs using stacking ensemble techniques combined with various machine learning classifiers to efficiently classify and detect abnormal respiratory sounds with high accuracy. The model proposed in this paper classified abnormal respiratory sounds with an accuracy of 96.9%, which is approximately 6.1% higher than the classification accuracy of baseline model.

A Time Series Graph based Convolutional Neural Network Model for Effective Input Variable Pattern Learning : Application to the Prediction of Stock Market (효과적인 입력변수 패턴 학습을 위한 시계열 그래프 기반 합성곱 신경망 모형: 주식시장 예측에의 응용)

  • Lee, Mo-Se;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.167-181
    • /
    • 2018
  • Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN(Convolutional Neural Network), which is known as the effective solution for recognizing and classifying images or voices, has been popularly applied to classification and prediction problems. In this study, we investigate the way to apply CNN in business problem solving. Specifically, this study propose to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. As mentioned, CNN has strength in interpreting images. Thus, the model proposed in this study adopts CNN as the binary classifier that predicts stock market direction (upward or downward) by using time series graphs as its inputs. That is, our proposal is to build a machine learning algorithm that mimics an experts called 'technical analysts' who examine the graph of past price movement, and predict future financial price movements. Our proposed model named 'CNN-FG(Convolutional Neural Network using Fluctuation Graph)' consists of five steps. In the first step, it divides the dataset into the intervals of 5 days. And then, it creates time series graphs for the divided dataset in step 2. The size of the image in which the graph is drawn is $40(pixels){\times}40(pixels)$, and the graph of each independent variable was drawn using different colors. In step 3, the model converts the images into the matrices. Each image is converted into the combination of three matrices in order to express the value of the color using R(red), G(green), and B(blue) scale. In the next step, it splits the dataset of the graph images into training and validation datasets. We used 80% of the total dataset as the training dataset, and the remaining 20% as the validation dataset. And then, CNN classifiers are trained using the images of training dataset in the final step. Regarding the parameters of CNN-FG, we adopted two convolution filters ($5{\times}5{\times}6$ and $5{\times}5{\times}9$) in the convolution layer. In the pooling layer, $2{\times}2$ max pooling filter was used. The numbers of the nodes in two hidden layers were set to, respectively, 900 and 32, and the number of the nodes in the output layer was set to 2(one is for the prediction of upward trend, and the other one is for downward trend). Activation functions for the convolution layer and the hidden layer were set to ReLU(Rectified Linear Unit), and one for the output layer set to Softmax function. To validate our model - CNN-FG, we applied it to the prediction of KOSPI200 for 2,026 days in eight years (from 2009 to 2016). To match the proportions of the two groups in the independent variable (i.e. tomorrow's stock market movement), we selected 1,950 samples by applying random sampling. Finally, we built the training dataset using 80% of the total dataset (1,560 samples), and the validation dataset using 20% (390 samples). The dependent variables of the experimental dataset included twelve technical indicators popularly been used in the previous studies. They include Stochastic %K, Stochastic %D, Momentum, ROC(rate of change), LW %R(Larry William's %R), A/D oscillator(accumulation/distribution oscillator), OSCP(price oscillator), CCI(commodity channel index), and so on. To confirm the superiority of CNN-FG, we compared its prediction accuracy with the ones of other classification models. Experimental results showed that CNN-FG outperforms LOGIT(logistic regression), ANN(artificial neural network), and SVM(support vector machine) with the statistical significance. These empirical results imply that converting time series business data into graphs and building CNN-based classification models using these graphs can be effective from the perspective of prediction accuracy. Thus, this paper sheds a light on how to apply deep learning techniques to the domain of business problem solving.

Optimizing Wavelet in Noise Canceler by Deep Learning Based on DWT (DWT 기반 딥러닝 잡음소거기에서 웨이블릿 최적화)

  • Won-Seog Jeong;Haeng-Woo Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.113-118
    • /
    • 2024
  • In this paper, we propose an optimal wavelet in a system for canceling background noise of acoustic signals. This system performed Discrete Wavelet Transform(DWT) instead of the existing Short Time Fourier Transform(STFT) and then improved noise cancellation performance through a deep learning process. DWT functions as a multi-resolution band-pass filter and obtains transformation parameters by time-shifting the parent wavelet at each level and using several wavelets whose sizes are scaled. Here, the noise cancellation performance of several wavelets was tested to select the most suitable mother wavelet for analyzing the speech. In this study, to verify the performance of the noise cancellation system for various wavelets, a simulation program using Tensorflow and Keras libraries was created and simulation experiments were performed for the four most commonly used wavelets. As a result of the experiment, the case of using Haar or Daubechies wavelets showed the best noise cancellation performance, and the mean square error(MSE) was significantly improved compared to the case of using other wavelets.

Real-time Multiple Pedestrians Tracking for Embedded Smart Visual Systems

  • Nguyen, Van Ngoc Nghia;Nguyen, Thanh Binh;Chung, Sun-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.2
    • /
    • pp.167-177
    • /
    • 2019
  • Even though so much progresses have been achieved in Multiple Object Tracking (MOT), most of reported MOT methods are not still satisfactory for commercial embedded products like Pan-Tilt-Zoom (PTZ) camera. In this paper, we propose a real-time multiple pedestrians tracking method for embedded environments. First, we design a new light weight convolutional neural network(CNN)-based pedestrian detector, which is constructed to detect even small size pedestrians, as well. For further saving of processing time, the designed detector is applied for every other frame, and Kalman filter is employed to predict pedestrians' positions in frames where the designed CNN-based detector is not applied. The pose orientation information is incorporated to enhance object association for tracking pedestrians without further computational cost. Through experiments on Nvidia's embedded computing board, Jetson TX2, it is verified that the designed pedestrian detector detects even small size pedestrians fast and well, compared to many state-of-the-art detectors, and that the proposed tracking method can track pedestrians in real-time and show accuracy performance comparably to performances of many state-of-the-art tracking methods, which do not target for operation in embedded systems.

A Real-time People Counting Algorithm Using Background Modeling and CNN (배경모델링과 CNN을 이용한 실시간 피플 카운팅 알고리즘)

  • Yang, HunJun;Jang, Hyeok;Jeong, JaeHyup;Lee, Bowon;Jeong, DongSeok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.70-77
    • /
    • 2017
  • Recently, Internet of Things (IoT) and deep learning techniques have affected video surveillance systems in various ways. The surveillance features that perform detection, tracking, and classification of specific objects in Closed Circuit Television (CCTV) video are becoming more intelligent. This paper presents real-time algorithm that can run in a PC environment using only a low power CPU. Traditional tracking algorithms combine background modeling using the Gaussian Mixture Model (GMM), Hungarian algorithm, and a Kalman filter; they have relatively low complexity but high detection errors. To supplement this, deep learning technology was used, which can be trained from a large amounts of data. In particular, an SRGB(Sequential RGB)-3 Layer CNN was used on tracked objects to emphasize the features of moving people. Performance evaluation comparing the proposed algorithm with existing ones using HOG and SVM showed move-in and move-out error rate reductions by 7.6 % and 9.0 %, respectively.

The Credit Information Feature Selection Method in Default Rate Prediction Model for Individual Businesses (개인사업자 부도율 예측 모델에서 신용정보 특성 선택 방법)

  • Hong, Dongsuk;Baek, Hanjong;Shin, Hyunjoon
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.75-85
    • /
    • 2021
  • In this paper, we present a deep neural network-based prediction model that processes and analyzes the corporate credit and personal credit information of individual business owners as a new method to predict the default rate of individual business more accurately. In modeling research in various fields, feature selection techniques have been actively studied as a method for improving performance, especially in predictive models including many features. In this paper, after statistical verification of macroeconomic indicators (macro variables) and credit information (micro variables), which are input variables used in the default rate prediction model, additionally, through the credit information feature selection method, the final feature set that improves prediction performance was identified. The proposed credit information feature selection method as an iterative & hybrid method that combines the filter-based and wrapper-based method builds submodels, constructs subsets by extracting important variables of the maximum performance submodels, and determines the final feature set through prediction performance analysis of the subset and the subset combined set.

Water Segmentation Based on Morphologic and Edge-enhanced U-Net Using Sentinel-1 SAR Images (형태학적 연산과 경계추출 학습이 강화된 U-Net을 활용한 Sentinel-1 영상 기반 수체탐지)

  • Kim, Hwisong;Kim, Duk-jin;Kim, Junwoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.793-810
    • /
    • 2022
  • Synthetic Aperture Radar (SAR) is considered to be suitable for near real-time inundation monitoring. The distinctly different intensity between water and land makes it adequate for waterbody detection, but the intrinsic speckle noise and variable intensity of SAR images decrease the accuracy of waterbody detection. In this study, we suggest two modules, named 'morphology module' and 'edge-enhanced module', which are the combinations of pooling layers and convolutional layers, improving the accuracy of waterbody detection. The morphology module is composed of min-pooling layers and max-pooling layers, which shows the effect of morphological transformation. The edge-enhanced module is composed of convolution layers, which has the fixed weights of the traditional edge detection algorithm. After comparing the accuracy of various versions of each module for U-Net, we found that the optimal combination is the case that the morphology module of min-pooling and successive layers of min-pooling and max-pooling, and the edge-enhanced module of Scharr filter were the inputs of conv9. This morphologic and edge-enhanced U-Net improved the F1-score by 9.81% than the original U-Net. Qualitative inspection showed that our model has capability of detecting small-sized waterbody and detailed edge of water, which are the distinct advancement of the model presented in this research, compared to the original U-Net.

A study on combination of loss functions for effective mask-based speech enhancement in noisy environments (잡음 환경에 효과적인 마스크 기반 음성 향상을 위한 손실함수 조합에 관한 연구)

  • Jung, Jaehee;Kim, Wooil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.3
    • /
    • pp.234-240
    • /
    • 2021
  • In this paper, the mask-based speech enhancement is improved for effective speech recognition in noise environments. In the mask-based speech enhancement, enhanced spectrum is obtained by multiplying the noisy speech spectrum by the mask. The VoiceFilter (VF) model is used as the mask estimation, and the Spectrogram Inpainting (SI) technique is used to remove residual noise of enhanced spectrum. In this paper, we propose a combined loss to further improve speech enhancement. In order to effectively remove the residual noise in the speech, the positive part of the Triplet loss is used with the component loss. For the experiment TIMIT database is re-constructed using NOISEX92 noise and background music samples with various Signal to Noise Ratio (SNR) conditions. Source to Distortion Ratio (SDR), Perceptual Evaluation of Speech Quality (PESQ), and Short-Time Objective Intelligibility (STOI) are used as the metrics of performance evaluation. When the VF was trained with the mean squared error and the SI model was trained with the combined loss, SDR, PESQ, and STOI were improved by 0.5, 0.06, and 0.002 respectively compared to the system trained only with the mean squared error.