• Title/Summary/Keyword: deep network

Search Result 2,908, Processing Time 0.029 seconds

Network Anomaly Traffic Detection Using WGAN-CNN-BiLSTM in Big Data Cloud-Edge Collaborative Computing Environment

  • Yue Wang
    • Journal of Information Processing Systems
    • /
    • v.20 no.3
    • /
    • pp.375-390
    • /
    • 2024
  • Edge computing architecture has effectively alleviated the computing pressure on cloud platforms, reduced network bandwidth consumption, and improved the quality of service for user experience; however, it has also introduced new security issues. Existing anomaly detection methods in big data scenarios with cloud-edge computing collaboration face several challenges, such as sample imbalance, difficulty in dealing with complex network traffic attacks, and difficulty in effectively training large-scale data or overly complex deep-learning network models. A lightweight deep-learning model was proposed to address these challenges. First, normalization on the user side was used to preprocess the traffic data. On the edge side, a trained Wasserstein generative adversarial network (WGAN) was used to supplement the data samples, which effectively alleviates the imbalance issue of a few types of samples while occupying a small amount of edge-computing resources. Finally, a trained lightweight deep learning network model is deployed on the edge side, and the preprocessed and expanded local data are used to fine-tune the trained model. This ensures that the data of each edge node are more consistent with the local characteristics, effectively improving the system's detection ability. In the designed lightweight deep learning network model, two sets of convolutional pooling layers of convolutional neural networks (CNN) were used to extract spatial features. The bidirectional long short-term memory network (BiLSTM) was used to collect time sequence features, and the weight of traffic features was adjusted through the attention mechanism, improving the model's ability to identify abnormal traffic features. The proposed model was experimentally demonstrated using the NSL-KDD, UNSW-NB15, and CIC-ISD2018 datasets. The accuracies of the proposed model on the three datasets were as high as 0.974, 0.925, and 0.953, respectively, showing superior accuracy to other comparative models. The proposed lightweight deep learning network model has good application prospects for anomaly traffic detection in cloud-edge collaborative computing architectures.

Deep Convolution Neural Networks in Computer Vision: a Review

  • Yoo, Hyeon-Joong
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.1
    • /
    • pp.35-43
    • /
    • 2015
  • Over the past couple of years, tremendous progress has been made in applying deep learning (DL) techniques to computer vision. Especially, deep convolutional neural networks (DCNNs) have achieved state-of-the-art performance on standard recognition datasets and tasks such as ImageNet Large-Scale Visual Recognition Challenge (ILSVRC). Among them, GoogLeNet network which is a radically redesigned DCNN based on the Hebbian principle and scale invariance set the new state of the art for classification and detection in the ILSVRC 2014. Since there exist various deep learning techniques, this review paper is focusing on techniques directly related to DCNNs, especially those needed to understand the architecture and techniques employed in GoogLeNet network.

Improving Wind Speed Forecasts Using Deep Neural Network

  • Hong, Seokmin;Ku, SungKwan
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.327-333
    • /
    • 2019
  • Wind speed data constitute important weather information for aircrafts flying at low altitudes, such as drones. Currently, the accuracy of low altitude wind predictions is much lower than that of high-altitude wind predictions. Deep neural networks are proposed in this study as a method to improve wind speed forecast information. Deep neural networks mimic the learning process of the interactions among neurons in the brain, and it is used in various fields, such as recognition of image, sound, and texts, image and natural language processing, and pattern recognition in time-series. In this study, the deep neural network model is constructed using the wind prediction values generated by the numerical model as an input to improve the wind speed forecasts. Using the ground wind speed forecast data collected at the Boseong Meteorological Observation Tower, wind speed forecast values obtained by the numerical model are compared with those obtained by the model proposed in this study for the verification of the validity and compatibility of the proposed model.

A Deep Learning based IOT Device Recognition System (딥러닝을 이용한 IOT 기기 인식 시스템)

  • Chu, Yeon Ho;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.1-5
    • /
    • 2019
  • As the number of IOT devices is growing rapidly, various 'see-thru connection' techniques have been reported for efficient communication with them. In this paper, we propose a deep learning based IOT device recognition system for interaction with these devices. The overall system consists of a TensorFlow based deep learning server and two Android apps for data collection and recognition purposes. As the basic neural network model, we adopted Google's inception-v3, and modified the output stage to classify 20 types of IOT devices. After creating a data set consisting of 1000 images of 20 categories, we trained our deep learning network using a transfer learning technology. As a result of the experiment, we achieve 94.5% top-1 accuracy and 98.1% top-2 accuracy.

Fake News Detection Using Deep Learning

  • Lee, Dong-Ho;Kim, Yu-Ri;Kim, Hyeong-Jun;Park, Seung-Myun;Yang, Yu-Jun
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1119-1130
    • /
    • 2019
  • With the wide spread of Social Network Services (SNS), fake news-which is a way of disguising false information as legitimate media-has become a big social issue. This paper proposes a deep learning architecture for detecting fake news that is written in Korean. Previous works proposed appropriate fake news detection models for English, but Korean has two issues that cannot apply existing models: Korean can be expressed in shorter sentences than English even with the same meaning; therefore, it is difficult to operate a deep neural network because of the feature scarcity for deep learning. Difficulty in semantic analysis due to morpheme ambiguity. We worked to resolve these issues by implementing a system using various convolutional neural network-based deep learning architectures and "Fasttext" which is a word-embedding model learned by syllable unit. After training and testing its implementation, we could achieve meaningful accuracy for classification of the body and context discrepancies, but the accuracy was low for classification of the headline and body discrepancies.

Deep Packet Inspection for Intrusion Detection Systems: A Survey

  • AbuHmed, Tamer;Mohaisen, Abedelaziz;Nyang, Dae-Hun
    • Information and Communications Magazine
    • /
    • v.24 no.11
    • /
    • pp.25-36
    • /
    • 2007
  • Deep packet inspection is widely recognized as a powerful way which is used for intrusion detection systems for inspecting, deterring and deflecting malicious attacks over the network. Fundamentally, almost intrusion detection systems have the ability to search through packets and identify contents that match with known attach. In this paper we survey the deep packet inspection implementations techniques, research challenges and algorithm. Finally, we provide a comparison between the different applied system.

Application of Artificial Neural Network Theory for Evaluation of Unconfined Compression Strength of Deep Cement Mixing Treated Soil (심층혼합처리된 개량토의 일축압축강도 추정을 위한 인공신경망의 적용)

  • Kim, Young-Sang;Jeong, Hyun-Chel;Huh, Jung-Won;Jeong, Gyeong-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1159-1164
    • /
    • 2006
  • In this paper an artificial neural network model is developed to estimate the unconfined compression strength of Deep Cement Mixing(DCM) treated soil. A database which consists of a number of unconfined compression test result compiled from 9 clay sites is used to train and test of the artificial neural network model. Developed neural network model requires water content of soil, unit weight of soil, passing percent of #200 sieve, weight of cement, w-c ratio as input variables. It is found that the developed artificial neural network model can predict more precise and reliable unconfined compression strength than the conventional empirical models.

  • PDF

Korean Dependency Parsing Using Deep Bi-affine Network and Stack Pointer Network (Deep Bi-affine Network와 스택 포인터 네트워크를 이용한 한국어 의존 구문 분석 시스템)

  • Ahn, Hwijeen;Park, Chanmin;Seo, Minyoung;Lee, Jaeha;Son, Jeongyeon;Kim, Juae;Seo, Jeongyeon
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.689-691
    • /
    • 2018
  • 의존 구문 분석은 자연어 이해 영역의 대표적인 과제 중 하나이다. 본 논문에서는 한국어 의존 구분 분석의 성능 향상을 위해 Deep Bi-affine Network 와 스택 포인터 네트워크의 앙상블 모델을 제안한다. Bi-affine 모델은 그래프 기반 방식, 스택 포인터 네트워크의 경우 그래프 기반과 전이 기반의 장점을 모두 사용하는 모델로 서로 다른 모델의 앙상블을 통해 성능 향상을 기대할 수 있다. 두 모델 모두 한국어 어절의 특성을 고려한 자질을 사용하였으며 세종 의존 구문 분석 데이터에 대해 UAS 90.60 / LAS 88.26(Deep Bi-affine Network), UAS 92.17 / LAS 90.08(스택 포인터 네트워크) 성능을 얻었다. 두 모델에 대한 앙상블 기법 적용시 추가적인 성능 향상을 얻을 수 있었다.

  • PDF

An image-based deep learning network technique for structural health monitoring

  • Lee, Dong-Han;Koh, Bong-Hwan
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.799-810
    • /
    • 2021
  • When monitoring the structural integrity of a bridge using data collected through accelerometers, identifying the profile of the load exerted on the bridge from the vehicles passing over it becomes a crucial task. In this study, the speed and location of vehicles on the deck of a bridge is reconfigured using real-time video to implicitly associate the load applied to the bridge with the response from the bridge sensors to develop an image-based deep learning network model. Instead of directly measuring the load that a moving vehicle exerts on the bridge, the intention in the proposed method is to replace the correlation between the movement of vehicles from CCTV images and the corresponding response by the bridge with a neural network model. Given the framework of an input-output-based system identification, CCTV images secured from the bridge and the acceleration measurements from a cantilevered beam are combined during the process of training the neural network model. Since in reality, structural damage cannot be induced in a bridge, the focus of the study is on identifying local changes in parameters by adding mass to a cantilevered beam in the laboratory. The study successfully identified the change in the material parameters in the beam by using the deep-learning neural network model. Also, the method correctly predicted the acceleration response of the beam. The proposed approach can be extended to the structural health monitoring of actual bridges, and its sensitivity to damage can also be improved through optimization of the network training.

Deep Neural Network-Based Critical Packet Inspection for Improving Traffic Steering in Software-Defined IoT

  • Tam, Prohim;Math, Sa;Kim, Seokhoon
    • Journal of Internet Computing and Services
    • /
    • v.22 no.6
    • /
    • pp.1-8
    • /
    • 2021
  • With the rapid growth of intelligent devices and communication technologies, 5G network environment has become more heterogeneous and complex in terms of service management and orchestration. 5G architecture requires supportive technologies to handle the existing challenges for improving the Quality of Service (QoS) and the Quality of Experience (QoE) performances. Among many challenges, traffic steering is one of the key elements which requires critically developing an optimal solution for smart guidance, control, and reliable system. Mobile edge computing (MEC), software-defined networking (SDN), network functions virtualization (NFV), and deep learning (DL) play essential roles to complementary develop a flexible computation and extensible flow rules management in this potential aspect. In this proposed system, an accurate flow recommendation, a centralized control, and a reliable distributed connectivity based on the inspection of packet condition are provided. With the system deployment, the packet is classified separately and recommended to request from the optimal destination with matched preferences and conditions. To evaluate the proposed scheme outperformance, a network simulator software was used to conduct and capture the end-to-end QoS performance metrics. SDN flow rules installation was experimented to illustrate the post control function corresponding to DL-based output. The intelligent steering for network communication traffic is cooperatively configured in SDN controller and NFV-orchestrator to lead a variety of beneficial factors for improving massive real-time Internet of Things (IoT) performance.