• 제목/요약/키워드: deep network

검색결과 2,908건 처리시간 0.027초

가상현실 음향을 위한 심층신경망 기반 사운드 보간 기법 (A Sound Interpolation Method Using Deep Neural Network for Virtual Reality Sound)

  • 최재규;최승호
    • 방송공학회논문지
    • /
    • 제24권2호
    • /
    • pp.227-233
    • /
    • 2019
  • 본 논문은 가상현실 음향 구현을 위한 심층신경망 기반 사운드 보간 방법에 관한 것으로서, 이를 통해 두 지점에서 취득한 음향 신호들을 사용하여 두 지점 사이의 음향을 생성한다. 산술평균이나 기하평균 같은 통계적 방법으로 사운드 보간을 수행할 수 있지만 이는 실제 비선형 음향 특성을 반영하기에 미흡하다. 이러한 문제를 해결하기 위해서 본 연구에서는 두 지점과 목표 지점의 음향신호를 기반으로 심층신경망을 훈련하여 사운드 보간을 시도하였으며, 실험결과 통계적 방법에 비해 심층신경망 기반 사운드 보간 방법의 성능이 우수함을 보였다.

엣지 컴퓨팅 환경에서 적용 가능한 딥러닝 기반 라벨 검사 시스템 구현 (Implementation of Deep Learning-based Label Inspection System Applicable to Edge Computing Environments)

  • 배주원;한병길
    • 대한임베디드공학회논문지
    • /
    • 제17권2호
    • /
    • pp.77-83
    • /
    • 2022
  • In this paper, the two-stage object detection approach is proposed to implement a deep learning-based label inspection system on edge computing environments. Since the label printed on the products during the production process contains important information related to the product, it is significantly to check the label information is correct. The proposed system uses the lightweight deep learning model that able to employ in the low-performance edge computing devices, and the two-stage object detection approach is applied to compensate for the low accuracy relatively. The proposed Two-Stage object detection approach consists of two object detection networks, Label Area Detection Network and Character Detection Network. Label Area Detection Network finds the label area in the product image, and Character Detection Network detects the words in the label area. Using this approach, we can detect characters precise even with a lightweight deep learning models. The SF-YOLO model applied in the proposed system is the YOLO-based lightweight object detection network designed for edge computing devices. This model showed up to 2 times faster processing time and a considerable improvement in accuracy, compared to other YOLO-based lightweight models such as YOLOv3-tiny and YOLOv4-tiny. Also since the amount of computation is low, it can be easily applied in edge computing environments.

안정화된 딥 네트워크 구조를 위한 다항식 신경회로망의 연구 (A Study on Polynomial Neural Networks for Stabilized Deep Networks Structure)

  • 전필한;김은후;오성권
    • 전기학회논문지
    • /
    • 제66권12호
    • /
    • pp.1772-1781
    • /
    • 2017
  • In this study, the design methodology for alleviating the overfitting problem of Polynomial Neural Networks(PNN) is realized with the aid of two kinds techniques such as L2 regularization and Sum of Squared Coefficients (SSC). The PNN is widely used as a kind of mathematical modeling methods such as the identification of linear system by input/output data and the regression analysis modeling method for prediction problem. PNN is an algorithm that obtains preferred network structure by generating consecutive layers as well as nodes by using a multivariate polynomial subexpression. It has much fewer nodes and more flexible adaptability than existing neural network algorithms. However, such algorithms lead to overfitting problems due to noise sensitivity as well as excessive trainning while generation of successive network layers. To alleviate such overfitting problem and also effectively design its ensuing deep network structure, two techniques are introduced. That is we use the two techniques of both SSC(Sum of Squared Coefficients) and $L_2$ regularization for consecutive generation of each layer's nodes as well as each layer in order to construct the deep PNN structure. The technique of $L_2$ regularization is used for the minimum coefficient estimation by adding penalty term to cost function. $L_2$ regularization is a kind of representative methods of reducing the influence of noise by flattening the solution space and also lessening coefficient size. The technique for the SSC is implemented for the minimization of Sum of Squared Coefficients of polynomial instead of using the square of errors. In the sequel, the overfitting problem of the deep PNN structure is stabilized by the proposed method. This study leads to the possibility of deep network structure design as well as big data processing and also the superiority of the network performance through experiments is shown.

Shear Capacity of Reinforced Concrete Beams Using Neural Network

  • Yang, Keun-Hyeok;Ashour, Ashraf F.;Song, Jin-Kyu
    • International Journal of Concrete Structures and Materials
    • /
    • 제1권1호
    • /
    • pp.63-73
    • /
    • 2007
  • Optimum multi-layered feed-forward neural network (NN) models using a resilient back-propagation algorithm and early stopping technique are built to predict the shear capacity of reinforced concrete deep and slender beams. The input layer neurons represent geometrical and material properties of reinforced concrete beams and the output layer produces the beam shear capacity. Training, validation and testing of the developed neural network have been achieved using 50%, 25%, and 25%, respectively, of a comprehensive database compiled from 631 deep and 549 slender beam specimens. The predictions obtained from the developed neural network models are in much better agreement with test results than those determined from shear provisions of different codes, such as KBCS, ACI 318-05, and EC2. The mean and standard deviation of the ratio between predicted using the neural network models and measured shear capacities are 1.02 and 0.18, respectively, for deep beams, and 1.04 and 0.17, respectively, for slender beams. In addition, the influence of different parameters on the shear capacity of reinforced concrete beams predicted by the developed neural network shows consistent agreement with those experimentally observed.

Improvement of the Convergence Rate of Deep Learning by Using Scaling Method

  • Ho, Jiacang;Kang, Dae-Ki
    • International journal of advanced smart convergence
    • /
    • 제6권4호
    • /
    • pp.67-72
    • /
    • 2017
  • Deep learning neural network becomes very popular nowadays due to the reason that it can learn a very complex dataset such as the image dataset. Although deep learning neural network can produce high accuracy on the image dataset, it needs a lot of time to reach the convergence stage. To solve the issue, we have proposed a scaling method to improve the neural network to achieve the convergence stage in a shorter time than the original method. From the result, we can observe that our algorithm has higher performance than the other previous work.

Deep Neural Network 언어모델을 위한 Continuous Word Vector 기반의 입력 차원 감소 (Input Dimension Reduction based on Continuous Word Vector for Deep Neural Network Language Model)

  • 김광호;이동현;임민규;김지환
    • 말소리와 음성과학
    • /
    • 제7권4호
    • /
    • pp.3-8
    • /
    • 2015
  • In this paper, we investigate an input dimension reduction method using continuous word vector in deep neural network language model. In the proposed method, continuous word vectors were generated by using Google's Word2Vec from a large training corpus to satisfy distributional hypothesis. 1-of-${\left|V\right|}$ coding discrete word vectors were replaced with their corresponding continuous word vectors. In our implementation, the input dimension was successfully reduced from 20,000 to 600 when a tri-gram language model is used with a vocabulary of 20,000 words. The total amount of time in training was reduced from 30 days to 14 days for Wall Street Journal training corpus (corpus length: 37M words).

Application of artificial neural networks (ANNs) and linear regressions (LR) to predict the deflection of concrete deep beams

  • Mohammadhassani, Mohammad;Nezamabadi-pour, Hossein;Jumaat, Mohd Zamin;Jameel, Mohammed;Arumugam, Arul M.S.
    • Computers and Concrete
    • /
    • 제11권3호
    • /
    • pp.237-252
    • /
    • 2013
  • This paper presents the application of artificial neural network (ANN) to predict deep beam deflection using experimental data from eight high-strength-self-compacting-concrete (HSSCC) deep beams. The optimized network architecture was ten input parameters, two hidden layers, and one output. The feed forward back propagation neural network of ten and four neurons in first and second hidden layers using TRAINLM training function predicted highly accurate and more precise load-deflection diagrams compared to classical linear regression (LR). The ANN's MSE values are 40 times smaller than the LR's. The test data R value from ANN is 0.9931; thus indicating a high confidence level.

Scene-based Nonuniformity Correction by Deep Neural Network with Image Roughness-like and Spatial Noise Cost Functions

  • Hong, Yong-hee;Song, Nam-Hun;Kim, Dae-Hyeon;Jun, Chan-Won;Jhee, Ho-Jin
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권6호
    • /
    • pp.11-19
    • /
    • 2019
  • In this paper, a new Scene-based Nonuniformity Correction (SBNUC) method is proposed by applying Image Roughness-like and Spatial Noise cost functions on deep neural network structure. The classic approaches for nonuniformity correction require generally plenty of sequential image data sets to acquire accurate image correction offset coefficients. The proposed method, however, is able to estimate offset from only a couple of images powered by the characteristic of deep neural network scheme. The real world SWIR image set is applied to verify the performance of proposed method and the result shows that image quality improvement of PSNR 70.3dB (maximum) is achieved. This is about 8.0dB more than the improved IRLMS algorithm which preliminarily requires precise image registration process on consecutive image frames.

심층신경망을 이용한 스마트 양식장용 어류 크기 자동 측정 시스템 (Automatic Fish Size Measurement System for Smart Fish Farm Using a Deep Neural Network)

  • 이윤호;전주현;주문갑
    • 대한임베디드공학회논문지
    • /
    • 제17권3호
    • /
    • pp.177-183
    • /
    • 2022
  • To measure the size and weight of the fish, we developed an automatic fish size measurement system using a deep neural network, where the YOLO (You Only Look Once)v3 model was used. To detect fish, an IP camera with infrared function was installed over the fish pool to acquire image data and used as input data for the deep neural network. Using the bounding box information generated as a result of detecting the fish and the structure for which the actual length is known, the size of the fish can be obtained. A GUI (Graphical User Interface) program was implemented using LabVIEW and RTSP (Real-Time Streaming protocol). The automatic fish size measurement system shows the results and stores them in a database for future work.

A hybrid singular value decomposition and deep belief network approach to detect damages in plates

  • Jinshang Sun;Qizhe Lin;Hu Jiang;Jiawei Xiang
    • Steel and Composite Structures
    • /
    • 제51권6호
    • /
    • pp.713-727
    • /
    • 2024
  • Damage detection in structures using the change of modal parameters (modal shapes and natural frequencies) has achieved satisfactory results. However, as modal shapes and natural frequencies alone may not provide enough information to accurately detect damages. Therefore, a hybrid singular value decomposition and deep belief network approach is developed to effectively identify damages in aluminum plate structures. Firstly, damage locations are determined using singular value decomposition (SVD) to reveal the singularities of measured displacement modal shapes. Secondly, using experimental modal analysis (EMA) to measure the natural frequencies of damaged aluminum plates as inputs, deep belief network (DBN) is employed to search damage severities from the damage evaluation database, which are calculated using finite element method (FEM). Both simulations and experimental investigations are performed to evaluate the performance of the presented hybrid method. Several damage cases in a simply supported aluminum plate show that the presented method is effective to identify multiple damages in aluminum plates with reasonable precision.