Kim, Kwi-Hoon;Kim, Ma-Ga;Yoon, Pu-Reun;Bang, Je-Hong;Myoung, Woo-Ho;Choi, Jin-Yong;Choi, Gyu-Hoon
Journal of The Korean Society of Agricultural Engineers
/
v.64
no.3
/
pp.63-73
/
2022
A more accurate understanding of the irrigation water supply is necessary for efficient agricultural water management. Although we measure water levels in an irrigation canal using ultrasonic water level gauges, some errors occur due to malfunctions or the surrounding environment. This study aims to apply CNN (Convolutional Neural Network) Deep-learning-based image classification and segmentation models to the irrigation canal's CCTV (Closed-Circuit Television) images. The CCTV images were acquired from the irrigation canal of the agricultural reservoir in Cheorwon-gun, Gangwon-do. We used the ResNet-50 model for the image classification model and the U-Net model for the image segmentation model. Using the Natural Breaks algorithm, we divided water level data into 2, 4, and 8 groups for image classification models. The classification models of 2, 4, and 8 groups showed the accuracy of 1.000, 0.987, and 0.634, respectively. The image segmentation model showed a Dice score of 0.998 and predicted water levels showed R2 of 0.97 and MAE (Mean Absolute Error) of 0.02 m. The image classification models can be applied to the automatic gate-controller at four divisions of water levels. Also, the image segmentation model results can be applied to the alternative measurement for ultrasonic water gauges. We expect that the results of this study can provide a more scientific and efficient approach for agricultural water management.
Coronavirus disease 2019 (COVID-19) not only targets the respiratory system but also triggers a cytokine storm and a series of complications, such as gastrointestinal problems, acute kidney injury, and myocardial ischemia. The use of natural products has been utilized to ease the symptoms of COVID-19, and in some cases, to strengthen the immune system against COVID-19. Natural products are readily available and have been regularly consumed for various health benefits. COVID-19 has been reported to be associated with the risk of thromboembolism and deep vein thrombosis. These thrombotic complications often affects mortality and morbidity. Panax ginseng, which has been widely consumed for its various health benefits has also been reported for its therapeutic effects against cardiovascular disease, thrombosis and platelet aggregation. In this review, we propose that P. ginseng can be consumed as a supplementation against the various associated complications of COVID-19, especially against thrombosis. We utilized the network pharmacology approach to validate the potential therapeutic properties of P. ginseng against COVID-19 mediated thrombosis, the coagulation pathway and platelet aggregation. Additionally, we aimed to investigate the roles of P. ginseng against COVID-19 with the involvement of platelet-leukocyte aggregates in relation to immunity-related responses in COVID-19.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.9
/
pp.1272-1278
/
2022
The government enacted and promulgated the 'Severe Accident Punishment Act' in January 2021 and is implementing this law. However, the number of occupational accidents in 2021 increased by 10.7% compared to the same period of the previous year. Therefore, safety measures are urgently needed in the industrial field. In this study, BLE Mesh networking technology is applied for safety management of high-risk industrial sites with poor communication environment. The complex sensor AIoT device collects gas sensing values, voice and motion values in real time, analyzes the information values through artificial intelligence LSTM algorithm and CNN algorithm, and recognizes dangerous situations and transmits them to the server. The server monitors the transmitted risk information in real time so that immediate relief measures are taken. By applying the AIoT device and safety management system proposed in this study to high-risk industrial sites, it will minimize industrial accidents and contribute to the expansion of the social safety net.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.21
no.4
/
pp.125-144
/
2022
When a variable message signs (VMS) system displays false information related to traffic safety caused by malicious attacks, it could pose a serious risk to drivers. If the normal message patterns displayed on the VMS system are learned, it would be possible to detect and respond to the anomalous messages quickly. This paper proposes a method for detecting anomalous messages by learning the normal patterns of messages using a bi-directional generative pre-trained transformer (GPT) network. In particular, the proposed method was trained using the normal messages and their system parameters to minimize the corresponding negative log-likelihood (NLL) values. After adequate training, the proposed method could detect an anomalous message when its NLL value was larger than a pre-specified threshold value. The experiment results showed that the proposed method could detect malicious messages and cases when the system error occurs.
Domestic violence in our society is where the abuser and the abuser live in the same space. Problems are left unresolved in families where abuse is reproducing. Domestic violence can be viewed as a crime that violates and tramples human rights. They rely solely on family support networks for solutions to domestic violence. The physical, emotional, and psychological pain and wounds that victims of domestic violence must endure are too deep. In order to help victims of domestic violence, case management services that can provide long-term and attentive help in the neighborhood or community are needed. For this, prevention and treatment of domestic violence should be considered together. And the interest and professional role of the community must follow.
Journal of the Korea Institute of Information Security & Cryptology
/
v.32
no.5
/
pp.817-826
/
2022
AI technology is being successfully introduced in many fields, and models deployed as a service are deployed with black box environment that does not expose the model's information to protect intellectual property rights and data. In a black box environment, attackers try to steal data or parameters used during training by using model output. This paper proposes a method of inferring the type of model to directly find out the composition of layer of the target model, based on the fact that there is no attack to infer the information about the type of model from the deep learning model. With ResNet, VGGNet, AlexNet, and simple convolutional neural network models trained with MNIST datasets, we show that the types of models can be inferred using the output values in the gray box and black box environments of the each model. In addition, we inferred the type of model with approximately 83% accuracy in the black box environment if we train the big and small relationship feature that proposed in this paper together, the results show that the model type can be infrerred even in situations where only partial information is given to attackers, not raw probability vectors.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.358-358
/
2023
본 연구에서는 그동안 수자원분야 강우유출 해석분야에 활용되었던 대표적인 머신러닝&딥러닝(ML&DL) 모델을 활용하여 모델의 하이퍼파라미터 튜닝뿐만 아니라 모델의 특성을 고려한 기상 및 수문데이터의 조합과 전처리(lag-time, 이동평균 등)를 통하여 데이터 특성과 ML&DL모델의 조합시나리오에 따른 일 유입량 예측성능을 비교 검토하는 연구를 수행하였다. 이를 위해 소양강댐 유역을 대상으로 1974년에서 2021년까지 축적된 기상 및 수문데이터를 활용하여 1) 강우, 2) 유입량, 3) 기상자료를 주요 영향변수(독립변수)로 고려하고, 이에 a) 지체시간(lag-time), b) 이동평균, c) 유입량의 성분분리조건을 적용하여 총 36가지 시나리오 조합을 ML&DL의 입력자료로 활용하였다. ML&DL 모델은 1) Linear Regression(LR), 2) Lasso, 3) Ridge, 4) SVR(Support Vector Regression), 5) Random Forest(RF), 6) LGBM(Light Gradient Boosting Model), 7) XGBoost의 7가지 ML방법과 8) LSTM(Long Short-Term Memory models), 9) TCN(Temporal Convolutional Network), 10) LSTM-TCN의 3가지 DL 방법, 총 10가지 ML&DL모델을 비교 검토하여 일유입량 예측을 위한 가장 적합한 데이터 조합 특성과 ML&DL모델을 성능평가와 함께 제시하였다. 학습된 모형의 유입량 예측 결과를 비교·분석한 결과, 소양강댐 유역에서는 딥러닝 중에서는 TCN모형이 가장 우수한 성능을 보였고(TCN>TCN-LSTM>LSTM), 트리기반 머신러닝중에서는 Random Forest와 LGBM이 우수한 성능을 보였으며(RF, LGBM>XGB), SVR도 LGBM수준의 우수한 성능을 나타내었다. LR, Lasso, Ridge 세가지 Regression모형은 상대적으로 낮은 성능을 보였다. 또한 소양강댐 댐유입량 예측에 대하여 강우, 유입량, 기상계열을 36가지로 조합한 결과, 입력자료에 lag-time이 적용된 강우계열의 조합 분석에서 세가지 Regression모델을 제외한 모든 모형에서 NSE(Nash-Sutcliffe Efficiency) 0.8이상(최대 0.867)의 성능을 보였으며, lag-time이 적용된 강우와 유입량계열을 조합했을 경우 NSE 0.85이상(최대 0.901)의 더 우수한 성능을 보였다.
Kyoung Pil Kim;Wan Sik Yu;Shin Uk Kang;Doo Yong Choi
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.521-521
/
2023
지방상수도의 관 파손사고 감지 및 누수관리 방법에는 블록시스템 구축을 통한 소블록별 야간최소유량 감시방법이 가장 대표적이다. 야간최소유량은 새벽 2시와 4시 사이의 인구 활동 비율이 가장 낮은 새벽 시간대에 소블록에 공급된 유량을 의미하며, 대부분 유량 성분은 누수량일 것이라는 가정에서 출발한다. 그러나 아파트 중심의 주거 형태를 보이는 도심지의 경우, 새벽 시간대에도 다량의 물수요가 비정기적으로 발생하고 있어 관망의 이상 여부를 감시하기 위한 관리기준으로서 야간최소유량을 이용하기에는 높은 일간 변동성에 따른 한계가 있다고 할 수 있다. 즉, 야간최소유량은 관 파손사고 발생의 감시보다는 관로 연결 또는 급수전 분기 부위에서 발생하는 미량의 누수가 수개월에 걸쳐 누적되는 장기추세를 분석하여 누수탐사반의 투입 시점을 결정하기 위한 근거를 제시하기 위한 목적으로 사용되며, 아직까지 관 파손사고의 발생은 자체적인 감지보다는 민원에 의해 인지되는 경우가 많다. 최근, 스마트관망 구축사업(SWM) 등을 통해 관 파손 및 누수 감지를 위한 청음식 누수감지센서가 소블록 내 도입되고 있으나, 초기 시설투자에 큰 비용이 수반되며 주변 소음과 배터리 전원방식의 한계로 인하여 새벽 시간대에만 분석이 제한적으로 적용되는 경우가 많아 이 역시도 상시적인 관 파손사고의 감시기술이라 보기는 어렵다. 본 연구에서는 소블록 유입점에서의 유량·압력과 소블록 내에 설치된 대수용가 스마트미터, 그리고 사고감지를 위한 수압계 사이의 평상시 수리적 균형을 학습한 DNN(Deep Neural Network) 모델을 이용하여 관 파손사고를 실시간 감지하는 모델 개발연구를 수행하였다. 모델은 관 파손사고 감지를 위한 수압계의 최적 위치와 대수를 결정하기 위한 모듈과 관 파손사고 감지모듈로 구성되며, 1개 소블록 Test-Bed를 구축하여 모델을 생성하고 PDD 관망해석 모델을 통해 생성된 가상의 사고에 대한 감지 여부로서 개발 모델의 감지성능을 평가하였다.
Lijun Zhao;Ke Wang;Jinjing, Zhang;Jialong Zhang;Anhong Wang
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.8
/
pp.2068-2082
/
2023
With the rapid development of deep learning, Depth Map Super-Resolution (DMSR) method has achieved more advanced performances. However, when the upsampling rate is very large, it is difficult to capture the structural consistency between color features and depth features by these DMSR methods. Therefore, we propose a color-image guided DMSR method based on iterative depth feature enhancement. Considering the feature difference between high-quality color features and low-quality depth features, we propose to decompose the depth features into High-Frequency (HF) and Low-Frequency (LF) components. Due to structural homogeneity of depth HF components and HF color features, only HF color features are used to enhance the depth HF features without using the LF color features. Before the HF and LF depth feature decomposition, the LF component of the previous depth decomposition and the updated HF component are combined together. After decomposing and reorganizing recursively-updated features, we combine all the depth LF features with the final updated depth HF features to obtain the enhanced-depth features. Next, the enhanced-depth features are input into the multistage depth map fusion reconstruction block, in which the cross enhancement module is introduced into the reconstruction block to fully mine the spatial correlation of depth map by interleaving various features between different convolution groups. Experimental results can show that the two objective assessments of root mean square error and mean absolute deviation of the proposed method are superior to those of many latest DMSR methods.
Journal of the Korea Institute of Information Security & Cryptology
/
v.33
no.4
/
pp.687-697
/
2023
Botnets, whose attack patterns are becoming more sophisticated and diverse, are recognized as one of the most serious cybersecurity threats today. This paper revisits the experimental results of botnet detection using autoencoder, a semi-supervised deep learning model, for UGR and CTU-13 data sets. To prepare the input vectors of autoencoder, we create data points by grouping the NetFlow records into sliding windows based on source IP address and aggregating them to form features. In particular, we discover a simple power-law; that is the number of data points that have some flow-degree is proportional to the number of NetFlow records aggregated in them. Moreover, we show that our power-law fits the real data very well resulting in correlation coefficients of 97% or higher. We also show that this power-law has an impact on the learning of autoencoder and, as a result, influences the performance of botnet detection. Furthermore, we evaluate the performance of autoencoder using the area under the Receiver Operating Characteristic (ROC) curve.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.