• 제목/요약/키워드: deep network

Search Result 2,982, Processing Time 0.027 seconds

Grasping Algorithm using Point Cloud-based Deep Learning (점군 기반의 심층학습을 이용한 파지 알고리즘)

  • Bae, Joon-Hyup;Jo, HyunJun;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.130-136
    • /
    • 2021
  • In recent years, much study has been conducted in robotic grasping. The grasping algorithms based on deep learning have shown better grasping performance than the traditional ones. However, deep learning-based algorithms require a lot of data and time for training. In this study, a grasping algorithm using an artificial neural network-based graspability estimator is proposed. This graspability estimator can be trained with a small number of data by using a neural network based on the residual blocks and point clouds containing the shapes of objects, not RGB images containing various features. The trained graspability estimator can measures graspability of objects and choose the best one to grasp. It was experimentally shown that the proposed algorithm has a success rate of 90% and a cycle time of 12 sec for one grasp, which indicates that it is an efficient grasping algorithm.

A Study of Multi-Target Localization Based on Deep Neural Network for Wi-Fi Indoor Positioning

  • Yoo, Jaehyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.1
    • /
    • pp.49-54
    • /
    • 2021
  • Indoor positioning system becomes of increasing interests due to the demands for accurate indoor location information where Global Navigation Satellite System signal does not approach. Wi-Fi access points (APs) built in many construction in advance helps developing a Wi-Fi Received Signal Strength Indicator (RSSI) based indoor localization. This localization method first collects pairs of position and RSSI measurement set, which is called fingerprint database, and then estimates a user's position when given a query measurement set by comparing the fingerprint database. The challenge arises from nonlinearity and noise on Wi-Fi RSSI measurements and complexity of handling a large amount of the fingerprint data. In this paper, machine learning techniques have been applied to implement Wi-Fi based localization. However, most of existing indoor localizations focus on single position estimation. The main contribution of this paper is to develop multi-target localization by using deep neural, which is beneficial when a massive crowd requests positioning service. This paper evaluates the proposed multilocalization based on deep learning from a multi-story building, and analyses its learning effect as increasing number of target positions.

Detecting A Crypto-mining Malware By Deep Learning Analysis

  • Aljehani, Shahad;Alsuwat, Hatim
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.172-180
    • /
    • 2022
  • Crypto-mining malware (known as crypto-jacking) is a novel cyber-attack that exploits the victim's computing resources such as CPU and GPU to generate illegal cryptocurrency. The attacker get benefit from crypto-jacking by using someone else's mining hardware and their electricity power. This research focused on the possibility of detecting the potential crypto-mining malware in an environment by analyzing both static and dynamic approaches of deep learning. The Program Executable (PE) files were utilized with deep learning methods which are Long Short-Term Memory (LSTM). The finding revealed that LTSM outperformed both SVM and RF in static and dynamic approaches with percentage of 98% and 96%, respectively. Future studies will focus on detecting the malware using larger dataset to have more accurate and realistic results.

Tumor Segmentation in Multimodal Brain MRI Using Deep Learning Approaches

  • Al Shehri, Waleed;Jannah, Najlaa
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.8
    • /
    • pp.343-351
    • /
    • 2022
  • A brain tumor forms when some tissue becomes old or damaged but does not die when it must, preventing new tissue from being born. Manually finding such masses in the brain by analyzing MRI images is challenging and time-consuming for experts. In this study, our main objective is to detect the brain's tumorous part, allowing rapid diagnosis to treat the primary disease instantly. With image processing techniques and deep learning prediction algorithms, our research makes a system capable of finding a tumor in MRI images of a brain automatically and accurately. Our tumor segmentation adopts the U-Net deep learning segmentation on the standard MICCAI BRATS 2018 dataset, which has MRI images with different modalities. The proposed approach was evaluated and achieved Dice Coefficients of 0.9795, 0.9855, 0.9793, and 0.9950 across several test datasets. These results show that the proposed system achieves excellent segmentation of tumors in MRIs using deep learning techniques such as the U-Net algorithm.

Joint Demosaicing and Super-resolution of Color Filter Array Image based on Deep Image Prior Network

  • Kurniawan, Edwin;Lee, Suk-Ho
    • International journal of advanced smart convergence
    • /
    • v.11 no.2
    • /
    • pp.13-21
    • /
    • 2022
  • In this paper, we propose a learning based joint demosaicing and super-resolution framework which uses only the mosaiced color filter array(CFA) image as the input. As the proposed method works only on the mosaicied CFA image itself, there is no need for a large dataset. Based on our framework, we proposed two different structures, where the first structure uses one deep image prior network, while the second uses two. Experimental results show that even though we use only the CFA image as the training image, the proposed method can result in better visual quality than other bilinear interpolation combined demosaicing methods, and therefore, opens up a new research area for joint demosaicing and super-resolution on raw images.

Building Change Detection Using Deep Learning for Remote Sensing Images

  • Wang, Chang;Han, Shijing;Zhang, Wen;Miao, Shufeng
    • Journal of Information Processing Systems
    • /
    • v.18 no.4
    • /
    • pp.587-598
    • /
    • 2022
  • To increase building change recognition accuracy, we present a deep learning-based building change detection using remote sensing images. In the proposed approach, by merging pixel-level and object-level information of multitemporal remote sensing images, we create the difference image (DI), and the frequency-domain significance technique is used to generate the DI saliency map. The fuzzy C-means clustering technique pre-classifies the coarse change detection map by defining the DI saliency map threshold. We then extract the neighborhood features of the unchanged pixels and the changed (buildings) from pixel-level and object-level feature images, which are then used as valid deep neural network (DNN) training samples. The trained DNNs are then utilized to identify changes in DI. The suggested strategy was evaluated and compared to current detection methods using two datasets. The results suggest that our proposed technique can detect more building change information and improve change detection accuracy.

CNN model transition learning comparative analysis based on deep learning for image classification (이미지 분류를 위한 딥러닝 기반 CNN모델 전이 학습 비교 분석)

  • Lee, Dong-jun;Jeon, Seung-Je;Lee, DongHwi
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.370-373
    • /
    • 2022
  • Recently, various deep learning framework models such as Tensorflow, Pytorch, Keras, etc. have appeared. In addition, CNN (Convolutional Neural Network) is applied to image recognition using frameworks such as Tensorflow, Pytorch, and Keras, and the optimization model in image classification is mainly used. In this paper, based on the results of training the CNN model with the Paitotchi and tensor flow frameworks most often used in the field of deep learning image recognition, the two frameworks are compared and analyzed for image analysis. Derived an optimized framework.

  • PDF

Applications and Challenges of Deep Learning and Non-Deep Learning Techniques in Video Compression Approaches

  • K. Siva Kumar;P. Bindhu Madhavi;K. Janaki
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.140-146
    • /
    • 2023
  • A detailed survey, applications and challenges of video encoding-decoding systems is discussed in this paper. A novel architecture has also been set aside for future work in the same direction. The literature reviews span the years 1960 to the present, highlighting the benchmark methods proposed by notable academics in the field of video compression. The timeline used to illustrate the review is divided into three sections. Classical methods, conventional heuristic methods, and current deep learning algorithms are all used for video compression in these categories. The milestone contributions are discussed for each category. The methods are summarized in various tables, along with their benefits and drawbacks. The summary also includes some comments regarding specific approaches. Existing studies' shortcomings are thoroughly described, allowing potential researchers to plot a course for future research. Finally, a closing note is made, as well as future work in the same direction.

Sentiment Analysis to Evaluate Different Deep Learning Approaches

  • Sheikh Muhammad Saqib ;Tariq Naeem
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.83-92
    • /
    • 2023
  • The majority of product users rely on the reviews that are posted on the appropriate website. Both users and the product's manufacturer could benefit from these reviews. Daily, thousands of reviews are submitted; how is it possible to read them all? Sentiment analysis has become a critical field of research as posting reviews become more and more common. Machine learning techniques that are supervised, unsupervised, and semi-supervised have worked very hard to harvest this data. The complicated and technological area of feature engineering falls within machine learning. Using deep learning, this tedious process may be completed automatically. Numerous studies have been conducted on deep learning models like LSTM, CNN, RNN, and GRU. Each model has employed a certain type of data, such as CNN for pictures and LSTM for language translation, etc. According to experimental results utilizing a publicly accessible dataset with reviews for all of the models, both positive and negative, and CNN, the best model for the dataset was identified in comparison to the other models, with an accuracy rate of 81%.

Proposing a New Approach for Detecting Malware Based on the Event Analysis Technique

  • Vu Ngoc Son
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.107-114
    • /
    • 2023
  • The attack technique by the malware distribution form is a dangerous, difficult to detect and prevent attack method. Current malware detection studies and proposals are often based on two main methods: using sign sets and analyzing abnormal behaviors using machine learning or deep learning techniques. This paper will propose a method to detect malware on Endpoints based on Event IDs using deep learning. Event IDs are behaviors of malware tracked and collected on Endpoints' operating system kernel. The malware detection proposal based on Event IDs is a new research approach that has not been studied and proposed much. To achieve this purpose, this paper proposes to combine different data mining methods and deep learning algorithms. The data mining process is presented in detail in section 2 of the paper.