• Title/Summary/Keyword: deep mixing method

Search Result 82, Processing Time 0.027 seconds

Understanding the Effects of Deep Fertilization on Upland Crop Cultivation and Ammonia Emissions using a Newly Developed Deep Fertilization Device (신개발 심층시비장치를 이용한 심층시비의 밭작물 재배 효과)

  • Sung-Chang Hong;Min-Wook Kim;Jin-Ho Kim;Seong-Jik Park
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.28-34
    • /
    • 2023
  • Nitrogen fertilizers applied to agricultural lands for crop cultivation can be volatilized as ammonia. The released ammonia can catalyze the formation of ultrafine dust (particulate matter, PM2.5), classified as a short-lived climate change pollutant, in the atmosphere. Currently, one of the prominent methods for fertilizer application in agricultural lands is soil surface application, which comprises spraying the fertilizers onto the soil surface, followed by mixing the fertilizers with the soil. Owing to the low nitrogen absorption rate of crops, when nitrogen fertilizers are applied in this manner, they can be lost from land surfaces through volatilization. Therefore, investigating a new fertilization method to reduce ammonia emissions and increase the fertilizer utilization efficiency of crops is necessary. In this study, to develop a method for reducing ammonia emissions from nitrogen fertilizers applied to soil surfaces, deep fertilization was conducted using a newly developed deep fertilization device, and ammonia emissions from barley, garlic, and onion fields were examined. Conventional fertilization (surface application) and deep fertilization (soil depth of 25 cm) were conducted for analysis. The fertilization rate was 100% of the standard fertilization rate used for barley, and deep fertilization of N, P, and K fertilizers was implemented. Ammonia emissions were collected using a wind tunnel chamber, and quantified subsequently susing the indole-phenol blue method. Ammonia emissions released from the basal fertilizer application persisted for approximately 58 d, beginning from approximately 3 d after fertilization in conventional treatments; however, ammonia was not released from deep fertilization. Moreover, barley, garlic, and onion yields were higher in the deep fertilization treatment than in the conventional fertilization treatment. In conclusion, a new fertilization method was identified as an alternative to the current approach of spraying fertilizers on the soil surface. This new method, which involves injecting nitrogen fertilizers at a soil depth of 25 cm, has the potential to reduce ammonia emissions and increase the yields of barley, garlic, and onion.

A Case Study on the Test Execution for DCM using Vietnam CFBC Fly Ash Solidification Material (베트남 순환유동층 발전(CFBC) 플라이애시 고화재를 사용한 심층혼합 처리공법(DCM) 시험시공 사례)

  • Kim, Keeseok;Lee, Dongwon;Lee, Jaewon;Kwon, Yongkyu;Yu, Jihyung;Hoang, Truong Xuan;Jung, Chanmuk;Min, Kyongnam
    • Resources Recycling
    • /
    • v.27 no.5
    • /
    • pp.38-48
    • /
    • 2018
  • Deep cement mixing method (DCM) is used to improve the quality of various ground type and its technical development proceeding based on performance improvements of solidification materials and mixing techniques with ground soil. In this study, it was possible to improve silty clay ground soil had 1 to 3 MPa compressive strength using solidification material that composed mainly circulating fluidized bed combustion (CFBC) power plant fly ash and reduce standard deviation of strengths from over 1.0 MPa to 0.322 MPa using improved auger bits in field test to forming more uniform bulbs than in case of using existing auger bit.

Determination of Composite Strength Parameter Using Elasto-Plastic Theory (탄소성이론을 이용한 복합지반의 대표 강도정수 예측)

  • 이주형;김영욱;박용원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.93-100
    • /
    • 2002
  • Vertical reinforcement of soft soils using the deep mixing method has received increasing applications. In this study, the theory of elasticity and plasticity including the upper bound theorem of limit analysis were used to derive the equations for obtaining composite elastic properties and shear strength parameters. The developed equations were validated using the finite element computer program SAGE CRISP. The analysis involved 4 different cases-two different type of soil and replacement ratios. Tile results of the analysis show that the proposed equations could determine the properties of composite material for practical applications.

  • PDF

Effect of Sea Water on Curing and Strength of Cemented Sand (해수가 고결모래의 양생 및 강도에 미치는 영향)

  • Park, Sung-Sik;Lee, Jun-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.6
    • /
    • pp.71-79
    • /
    • 2012
  • Sand compaction pile and stone column replacement methods have been commonly used for improving soft ground in the nearshore. Recently, DCM (Deep cement mixing) method, which can harden soft clays by mixing with cement, is more popularly used in such soft ground improvement. Sandy soils also exist in the seashore. Therefore, in this study, the effect of salinity in sea water and curing methods on the strength of cemented sand was evaluated in terms of unconfined compressive strength (UCS). The sand was mixed with five different cement ratios and distilled water or sea water, and then compacted into a cylindrical specimen. They were cured for 3 days under sea water for DCM construction condition and air cured for onshore curing condition. When a specimen was cured under sea water without confinement, it was easily collapsed due to initiation of cracks. When the cement ratio and curing method were the same, the UCS of the specimen without sea water was at maximum 3.5 times higher than those with sea water. The sea water used for mixing sand had more influence on strength reduction than the sea water used for curing. When the cement ratio was the same, the UCS of air-cured specimen was at average 2 times higher than those of water-cured specimen, regardless of water used.

Strain-dependent dynamic properties of cemented Busan clay (부산 고결점토의 변형률 의존적 동적거동특성에 관한 연구)

  • Kim, Ah-Ram;Chang, Il-Han;Cho, Gye-Chun;Shim, Sung-Hyun;Kang, Yeoun-Ike
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.61-67
    • /
    • 2010
  • Thick soft clay deposits which are generally located at the west and south coast of the Korean peninsula have complicated characteristics according to their orientation and formation history. Thus, several geotechnical problems could possibly occur when those soft clay deposits are used as foundations for marine structures. Deep cement mixing (DCM) method is one of the most widely used soft soil improvement method for various marine structures, nowadays. DCM method injects binders such as cement into the soft ground directly and mixes with the in-situ soil to improve the strength and other geotechnical properties sufficiently. However, the natural impacts induced by dynamic motions such as ocean waves, wind, typhoon, and tusnami give significant influences on the stability of marine structures and their underlaying foundations. Thus, the dynamic properties become important design criteria to insure the seismic stability of marine structures. In this study, the dynamic behavior of cemented Busan clay is evaluated. Laboratory unconfined compression test and resonant column test are performed on natural in-situ soil and cement mixed specimens to confirm the strength and strain-dependent dynamic behavior variation induced by cement mixing treatment. Results show that the unconfined compressive strength and shear modulus increase with curing time and cement content increment. Finally, the optimized cement mixing ratio for sufficient dynamic stability is obtained through this study. The results of this study are expected to be widely used to improve the reliability of seismic design for marine structures.

  • PDF

Reducing the Effect of Ammonia Emissions from Paddy and Upland Soil with Deep Placement of Nitrogen Fertilizers (질소비료의 심층시비에 의한 논과 밭 토양의 암모니아 배출 억제 효과)

  • Sung-Chang Hong;Min-Wook Kim;Jin-Ho Kim
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.4
    • /
    • pp.230-235
    • /
    • 2022
  • BACKGROUND: Ammonia gas emitted from nitrogen fertilizers applied in agricultural land is an environmental pollutant that catalyzes the formation of fine particulate matter (PM2.5). A significant portion (12-18%) of nitrogen fertilizer input for crop cultivation is emitted to the atmosphere as ammonia gas, a loss form of nitrogen fertilizer in agricultural land. The widely practiced method for fertilizer use in agricultural fields involves spraying the fertilizers on the surface of farmlands and mixing those with the soils through such means as rotary work. To test the potential reduction of ammonia emission by nitrogen fertilizers from the soil surface, we have added N, P, and K at 2 g each to the glass greenhouse soil, and the ammonia emission was analyzed. METHODS AND RESULTS: The treatment consisted of non-fertilization, surface spray (conventional fertilization), and soil depth spray at 10, 15, 20, 25, and 30 cm. Ammonia was collected using a self-manufactured vertical wind tunnel chamber, and it was quantified by the indophenol-blue method. As a result of analyzing ammonia emission after fertilizer treatments by soil depth, ammonia was emitted by the surface spray treatment immediately after spraying the fertilizer in the paddy soil, with no ammonia emission occurring at a soil depth of 10 cm to 30 cm. In the upland soil, ammonia was emitted by the surface spray treatment after 2 days of treatment, and there was no ammonia emission at a soil depth of 15 cm to 30 cm. Lettuce and Chinese cabbage treated with fertilizer at depths of 20 cm and 30 cm showed increases of fresh weight and nutrient and potassium contents. CONCLUSION(S): In conclusion, rather than the current fertilization method of spraying and mixing the fertilizers on the soil surface, deep placement of the nitrogen fertilizer in the soil at 10 cm or more in paddy fields and 15 cm or more in upland fields was considered as a better fertilization method to reduce ammonia emission.

A Study on the Field Application of Ground Stabilizer using Circulating Resource for Improvement of Soft Ground in Saemangeum Area (새만금 지역의 연약지반 개량을 위한 순환자원 활용 지반안정재의 현장적용에 관한 연구)

  • Seo, Se-Gwan;Kim, You-Seong;Cho, Dae-sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.103-110
    • /
    • 2020
  • The DMM (Deep mixing method) is a construction method in which an improved pile is installed in the soft ground by excavation ground using an auger and then mixing ground stabilizer with soil. Improved pile installed in the soft ground by the DMM may have different compressive strength depending on the properties and characteristics of the soil. In the previous study, laboratory tests were performed on the ground stabilizer for the DMM developed by using the ash of the circulating fluidized bed boiler as a stimulator for alkali activation of the blast furnace slag. And the test results were analyzed to derive the correlation between the unit weight of binder (γB) and the uniaxial compressive strength (qu). In this study, comparative reviews were conducted on the correlations derived from the same laboratory tests on soil material collected from the Saemangeum area and the stability of the site was evaluated by analyzing the test results performed at the site. As a result, the clay collected from the Saemangeum area satisfies the correlation between the unit weight of binder (γB) and the uniaxial compressive strength (qu) derived from the previous study. And the result of the test at the field showed a higher uniaxial compressive strength than the standard strength at the field, indicating excellent stability.

A Feasibility Study on the Deep Soil Mixing Barrier to Control Contaminated Groundwater (오염지하수의 확산방지를 위한 대체 혼합차수재의 적용에 관한 연구)

  • 김윤희;임동희;이재영
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.53-59
    • /
    • 2001
  • There is a lot of method to manage the insanitary landfill but vertical cutoff walls have been widespreadly used and were installed into the subsurface to act as a barrier to horizontal groundwater flow, The stabilized material such as specialized cement or mixed soil with additives has been generally applied for the materials of the deep soil mixing barrier in korea. The amount of the stabilized material is dependent on the field conditions, because the mixing ratio of the material and the field soil should achieve a requirement in the coefficient of permeability, lower than 1.0$\times$$10^{7}$cm/sec. This study determined the quantity and optimized function ratio of the stabilized material in the formation process of the mixed barrier that was added with stabilized material on the field soil classified into SW-SC under USCS (Unified Soil Classification System). After that the fly ash and lime were selected as an additives an that could improve the function of the stabilized material and then the method to improve the functional progress in the usage of putting into the stabilized material as an appropriate ratio was studied and reviewed. The author used the flexible-wall permeameter for measuring the permeability and unconfined compressive strength tester for compressive strength, and in the view of environmental engineering the absorption test of heavy metals and leaching test regulated by Korean Waste Management Act were performed. As the results, the suitable mixing ratio of the stabilized material in the deep soil mixing barrier was determined as 13 percent. To make workability easy, the ratio of stabilized material and water was proven to be 1 : 1.5. With the results, the range of the portion of the additives(fly ash : lime= 70 : 30) was proven to be 20-40% for improving the function of the stabilized material, lowering of permeability. In heavy metal absorption assessment of the mixing barrier system with the additives, the result of heavy metal absorption was proved to be almost same with the case of the original stabilized material; high removal efficiency of heavy metals. In addition, the leaching concentration of heavy metals from the leaching test for the environmental hazard assessment showed lower than the regulated criteria.

  • PDF

Data Augmentation Techniques for Deep Learning-Based Medical Image Analyses (딥러닝 기반 의료영상 분석을 위한 데이터 증강 기법)

  • Mingyu Kim;Hyun-Jin Bae
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.6
    • /
    • pp.1290-1304
    • /
    • 2020
  • Medical image analyses have been widely used to differentiate normal and abnormal cases, detect lesions, segment organs, etc. Recently, owing to many breakthroughs in artificial intelligence techniques, medical image analyses based on deep learning have been actively studied. However, sufficient medical data are difficult to obtain, and data imbalance between classes hinder the improvement of deep learning performance. To resolve these issues, various studies have been performed, and data augmentation has been found to be a solution. In this review, we introduce data augmentation techniques, including image processing, such as rotation, shift, and intensity variation methods, generative adversarial network-based method, and image property mixing methods. Subsequently, we examine various deep learning studies based on data augmentation techniques. Finally, we discuss the necessity and future directions of data augmentation.

Influence of column yielding on degree of consolidation of soft foundations improved by deep mixed columns

  • Jiang, Yan;Han, Jie;Zheng, Gang
    • Geomechanics and Engineering
    • /
    • v.6 no.2
    • /
    • pp.173-194
    • /
    • 2014
  • Laboratory and field data showed that deep mixed (DM) columns accelerated the rate of consolidation of the soft foundations. Most analyses of consolidation of DM column-improved foundations so far have been based on the elastic theory. In reality, the DM columns may yield due to the stress concentration from the soft soil and its limited strength. The influence of column yielding on the degree of consolidation of the soft foundation improved by DM columns has not been well investigated. A three-dimensional mechanically and hydraulically-coupled numerical method was adopted in this study to investigate the degree of consolidation of the DM column foundation considering column yielding. A unit cell model was used, in which the soil was modeled as a linearly elastic material. For a comparison purpose, the DM column was modeled as an elastic or elastic-plastic material. This study examined the aspects of stress transfer, settlement, and degree of consolidation of the foundations without or with the consideration of the yielding of the DM column. A parametric study was conducted to investigate the influence of the column yielding on the stress concentration ratio, settlement, and average degree of consolidation of the DM column foundation. The stress concentration ratio increased and then decreased to reach a constant value with the increase of the column modulus and time. A simplified method was proposed to calculate the maximum stress concentration ratios under undrained and drained conditions considering the column yielding. The simplified method based on a composite foundation concept could conservatively estimate the consolidation settlement. An increase of the column modulus, area replacement ratio, and/or column permeability increased the rate of consolidation.