• Title/Summary/Keyword: deep machine learning model

Search Result 595, Processing Time 0.032 seconds

Computing machinery techniques for performance prediction of TBM using rock geomechanical data in sedimentary and volcanic formations

  • Hanan Samadi;Arsalan Mahmoodzadeh;Shtwai Alsubai;Abdullah Alqahtani;Abed Alanazi;Ahmed Babeker Elhag
    • Geomechanics and Engineering
    • /
    • v.37 no.3
    • /
    • pp.223-241
    • /
    • 2024
  • Evaluating the performance of Tunnel Boring Machines (TBMs) stands as a pivotal juncture in the domain of hard rock mechanized tunneling, essential for achieving both a dependable construction timeline and utilization rate. In this investigation, three advanced artificial neural networks namely, gated recurrent unit (GRU), back propagation neural network (BPNN), and simple recurrent neural network (SRNN) were crafted to prognosticate TBM-rate of penetration (ROP). Drawing from a dataset comprising 1125 data points amassed during the construction of the Alborze Service Tunnel, the study commenced. Initially, five geomechanical parameters were scrutinized for their impact on TBM-ROP efficiency. Subsequent statistical analyses narrowed down the effective parameters to three, including uniaxial compressive strength (UCS), peak slope index (PSI), and Brazilian tensile strength (BTS). Among the methodologies employed, GRU emerged as the most robust model, demonstrating exceptional predictive prowess for TBM-ROP with staggering accuracy metrics on the testing subset (R2 = 0.87, NRMSE = 6.76E-04, MAD = 2.85E-05). The proposed models present viable solutions for analogous ground and TBM tunneling scenarios, particularly beneficial in routes predominantly composed of volcanic and sedimentary rock formations. Leveraging forecasted parameters holds the promise of enhancing both machine efficiency and construction safety within TBM tunneling endeavors.

Comparison of Solar Power Generation Forecasting Performance in Daejeon and Busan Based on Preprocessing Methods and Artificial Intelligence Techniques: Using Meteorological Observation and Forecast Data (전처리 방법과 인공지능 모델 차이에 따른 대전과 부산의 태양광 발전량 예측성능 비교: 기상관측자료와 예보자료를 이용하여)

  • Chae-Yeon Shim;Gyeong-Min Baek;Hyun-Su Park;Jong-Yeon Park
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.177-185
    • /
    • 2024
  • As increasing global interest in renewable energy due to the ongoing climate crisis, there is a growing need for efficient technologies to manage such resources. This study focuses on the predictive skill of daily solar power generation using weather observation and forecast data. Meteorological data from the Korea Meteorological Administration and solar power generation data from the Korea Power Exchange were utilized for the period from January 2017 to May 2023, considering both inland (Daejeon) and coastal (Busan) regions. Temperature, wind speed, relative humidity, and precipitation were selected as relevant meteorological variables for solar power prediction. All data was preprocessed by removing their systematic components to use only their residuals and the residual of solar data were further processed with weighted adjustments for homoscedasticity. Four models, MLR (Multiple Linear Regression), RF (Random Forest), DNN (Deep Neural Network), and RNN (Recurrent Neural Network), were employed for solar power prediction and their performances were evaluated based on predicted values utilizing observed meteorological data (used as a reference), 1-day-ahead forecast data (referred to as fore1), and 2-day-ahead forecast data (fore2). DNN-based prediction model exhibits superior performance in both regions, with RNN performing the least effectively. However, MLR and RF demonstrate competitive performance comparable to DNN. The disparities in the performance of the four different models are less pronounced than anticipated, underscoring the pivotal role of fitting models using residuals. This emphasizes that the utilized preprocessing approach, specifically leveraging residuals, is poised to play a crucial role in the future of solar power generation forecasting.

Prediction of Sea Surface Temperature and Detection of Ocean Heat Wave in the South Sea of Korea Using Time-series Deep-learning Approaches (시계열 기계학습을 이용한 한반도 남해 해수면 온도 예측 및 고수온 탐지)

  • Jung, Sihun;Kim, Young Jun;Park, Sumin;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1077-1093
    • /
    • 2020
  • Sea Surface Temperature (SST) is an important environmental indicator that affects climate coupling systems around the world. In particular, coastal regions suffer from abnormal SST resulting in huge socio-economic damage. This study used Long Short Term Memory (LSTM) and Convolutional Long Short Term Memory (ConvLSTM) to predict SST up to 7 days in the south sea region in South Korea. The results showed that the ConvLSTM model outperformed the LSTM model, resulting in a root mean square error (RMSE) of 0.33℃ and a mean difference of -0.0098℃. Seasonal comparison also showed the superiority of ConvLSTM to LSTM for all seasons. However, in summer, the prediction accuracy for both models with all lead times dramatically decreased, resulting in RMSEs of 0.48℃ and 0.27℃ for LSTM and ConvLSTM, respectively. This study also examined the prediction of abnormally high SST based on three ocean heatwave categories (i.e., warning, caution, and attention) with the lead time from one to seven days for an ocean heatwave case in summer 2017. ConvLSTM was able to successfully predict ocean heatwave five days in advance.

Prediction of Dormant Customer in the Card Industry (카드산업에서 휴면 고객 예측)

  • DongKyu Lee;Minsoo Shin
    • Journal of Service Research and Studies
    • /
    • v.13 no.2
    • /
    • pp.99-113
    • /
    • 2023
  • In a customer-based industry, customer retention is the competitiveness of a company, and improving customer retention improves the competitiveness of the company. Therefore, accurate prediction and management of potential dormant customers is paramount to increasing the competitiveness of the enterprise. In particular, there are numerous competitors in the domestic card industry, and the government is introducing an automatic closing system for dormant card management. As a result of these social changes, the card industry must focus on better predicting and managing potential dormant cards, and better predicting dormant customers is emerging as an important challenge. In this study, the Recurrent Neural Network (RNN) methodology was used to predict potential dormant customers in the card industry, and in particular, Long-Short Term Memory (LSTM) was used to efficiently learn data for a long time. In addition, to redefine the variables needed to predict dormant customers in the card industry, Unified Theory of Technology (UTAUT), an integrated technology acceptance theory, was applied to redefine and group the variables used in the model. As a result, stable model accuracy and F-1 score were obtained, and Hit-Ratio proved that models using LSTM can produce stable results compared to other algorithms. It was also found that there was no moderating effect of demographic information that could occur in UTAUT, which was pointed out in previous studies. Therefore, among variable selection models using UTAUT, dormant customer prediction models using LSTM are proven to have non-biased stable results. This study revealed that there may be academic contributions to the prediction of dormant customers using LSTM algorithms that can learn well from previously untried time series data. In addition, it is a good example to show that it is possible to respond to customers who are preemptively dormant in terms of customer management because it is predicted at a time difference with the actual dormant capture, and it is expected to contribute greatly to the industry.

Explainable Artificial Intelligence Applied in Deep Learning for Review Helpfulness Prediction (XAI 기법을 이용한 리뷰 유용성 예측 결과 설명에 관한 연구)

  • Dongyeop Ryu;Xinzhe Li;Jaekyeong Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.35-56
    • /
    • 2023
  • With the development of information and communication technology, numerous reviews are continuously posted on websites, which causes information overload problems. Therefore, users face difficulty in exploring reviews for their decision-making. To solve such a problem, many studies on review helpfulness prediction have been actively conducted to provide users with helpful and reliable reviews. Existing studies predict review helpfulness mainly based on the features included in the review. However, such studies disable providing the reason why predicted reviews are helpful. Therefore, this study aims to propose a methodology for applying eXplainable Artificial Intelligence (XAI) techniques in review helpfulness prediction to address such a limitation. This study uses restaurant reviews collected from Yelp.com to compare the prediction performance of six models widely used in previous studies. Next, we propose an explainable review helpfulness prediction model by applying the XAI technique to the model with the best prediction performance. Therefore, the methodology proposed in this study can recommend helpful reviews in the user's purchasing decision-making process and provide the interpretation of why such predicted reviews are helpful.

Predicting Performance of Heavy Industry Firms in Korea with U.S. Trade Policy Data (미국 무역정책 변화가 국내 중공업 기업의 경영성과에 미치는 영향)

  • Park, Jinsoo;Kim, Kyoungho;Kim, Buomsoo;Suh, Jihae
    • The Journal of Society for e-Business Studies
    • /
    • v.22 no.4
    • /
    • pp.71-101
    • /
    • 2017
  • Since late 2016, protectionism has been a major trend in world trade with the Great Britain exiting the European Union and the United States electing Donald Trump as the 45th president. Consequently, there has been a huge public outcry regarding the negative prospects of heavy industry firms in Korea, which are highly dependent upon international trade with Western countries including the United States. In light of such trend and concerns, we have tried to predict business performance of heavy industry firms in Korea with data regarding trade policy of the United States. United States International Trade Commission (USITC) levies countervailing duties and anti-dumping duties to firms that violate its fair-trade regulations. In this study, we have performed data analysis with past records of countervailing duties and anti-dumping duties. With results from clustering analysis, it could be concluded that trade policy trends of the Unites States significantly affects the business performance of heavy industry firms in Korea. Furthermore, we have attempted to quantify such effects by employing long short-term memory (LSTM), a popular neural networks model that is well-suited to deal with sequential data. Our major contribution is that we have succeeded in empirically validating the intuitive argument and also predicting the future trend with rigorous data mining techniques. With some improvements, our results are expected to be highly relevant to designing regulations regarding heavy industry in Korea.

Research on Text Classification of Research Reports using Korea National Science and Technology Standards Classification Codes (국가 과학기술 표준분류 체계 기반 연구보고서 문서의 자동 분류 연구)

  • Choi, Jong-Yun;Hahn, Hyuk;Jung, Yuchul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.169-177
    • /
    • 2020
  • In South Korea, the results of R&D in science and technology are submitted to the National Science and Technology Information Service (NTIS) in reports that have Korea national science and technology standard classification codes (K-NSCC). However, considering there are more than 2000 sub-categories, it is non-trivial to choose correct classification codes without a clear understanding of the K-NSCC. In addition, there are few cases of automatic document classification research based on the K-NSCC, and there are no training data in the public domain. To the best of our knowledge, this study is the first attempt to build a highly performing K-NSCC classification system based on NTIS report meta-information from the last five years (2013-2017). To this end, about 210 mid-level categories were selected, and we conducted preprocessing considering the characteristics of research report metadata. More specifically, we propose a convolutional neural network (CNN) technique using only task names and keywords, which are the most influential fields. The proposed model is compared with several machine learning methods (e.g., the linear support vector classifier, CNN, gated recurrent unit, etc.) that show good performance in text classification, and that have a performance advantage of 1% to 7% based on a top-three F1 score.

Dual CNN Structured Sound Event Detection Algorithm Based on Real Life Acoustic Dataset (실생활 음향 데이터 기반 이중 CNN 구조를 특징으로 하는 음향 이벤트 인식 알고리즘)

  • Suh, Sangwon;Lim, Wootaek;Jeong, Youngho;Lee, Taejin;Kim, Hui Yong
    • Journal of Broadcast Engineering
    • /
    • v.23 no.6
    • /
    • pp.855-865
    • /
    • 2018
  • Sound event detection is one of the research areas to model human auditory cognitive characteristics by recognizing events in an environment with multiple acoustic events and determining the onset and offset time for each event. DCASE, a research group on acoustic scene classification and sound event detection, is proceeding challenges to encourage participation of researchers and to activate sound event detection research. However, the size of the dataset provided by the DCASE Challenge is relatively small compared to ImageNet, which is a representative dataset for visual object recognition, and there are not many open sources for the acoustic dataset. In this study, the sound events that can occur in indoor and outdoor are collected on a larger scale and annotated for dataset construction. Furthermore, to improve the performance of the sound event detection task, we developed a dual CNN structured sound event detection system by adding a supplementary neural network to a convolutional neural network to determine the presence of sound events. Finally, we conducted a comparative experiment with both baseline systems of the DCASE 2016 and 2017.

Detecting Vehicles That Are Illegally Driving on Road Shoulders Using Faster R-CNN (Faster R-CNN을 이용한 갓길 차로 위반 차량 검출)

  • Go, MyungJin;Park, Minju;Yeo, Jiho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.105-122
    • /
    • 2022
  • According to the statistics about the fatal crashes that have occurred on the expressways for the last 5 years, those who died on the shoulders of the road has been as 3 times high as the others who died on the expressways. It suggests that the crashes on the shoulders of the road should be fatal, and that it would be important to prevent the traffic crashes by cracking down on the vehicles intruding the shoulders of the road. Therefore, this study proposed a method to detect a vehicle that violates the shoulder lane by using the Faster R-CNN. The vehicle was detected based on the Faster R-CNN, and an additional reading module was configured to determine whether there was a shoulder violation. For experiments and evaluations, GTAV, a simulation game that can reproduce situations similar to the real world, was used. 1,800 images of training data and 800 evaluation data were processed and generated, and the performance according to the change of the threshold value was measured in ZFNet and VGG16. As a result, the detection rate of ZFNet was 99.2% based on Threshold 0.8 and VGG16 93.9% based on Threshold 0.7, and the average detection speed for each model was 0.0468 seconds for ZFNet and 0.16 seconds for VGG16, so the detection rate of ZFNet was about 7% higher. The speed was also confirmed to be about 3.4 times faster. These results show that even in a relatively uncomplicated network, it is possible to detect a vehicle that violates the shoulder lane at a high speed without pre-processing the input image. It suggests that this algorithm can be used to detect violations of designated lanes if sufficient training datasets based on actual video data are obtained.

Hourly Prediction of Particulate Matter (PM2.5) Concentration Using Time Series Data and Random Forest (시계열 데이터와 랜덤 포레스트를 활용한 시간당 초미세먼지 농도 예측)

  • Lee, Deukwoo;Lee, Soowon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.4
    • /
    • pp.129-136
    • /
    • 2020
  • PM2.5 which is a very tiny air particulate matter even smaller than PM10 has been issued in the environmental problem. Since PM2.5 can cause eye diseases or respiratory problems and infiltrate even deep blood vessels in the brain, it is important to predict PM2.5. However, it is difficult to predict PM2.5 because there is no clear explanation yet regarding the creation and the movement of PM2.5. Thus, prediction methods which not only predict PM2.5 accurately but also have the interpretability of the result are needed. To predict hourly PM2.5 of Seoul city, we propose a method using random forest with the adjusted bootstrap number from the time series ground data preprocessed on different sources. With this method, the prediction model can be trained uniformly on hourly information and the result has the interpretability. To evaluate the prediction performance, we conducted comparative experiments. As a result, the performance of the proposed method was superior against other models in all labels. Also, the proposed method showed the importance of the variables regarding the creation of PM2.5 and the effect of China.