• 제목/요약/키워드: deep learning-based computer vision

검색결과 240건 처리시간 0.019초

어류의 외부형질 측정 자동화 개발 현황 (Current Status of Automatic Fish Measurement)

  • 이명기
    • 한국수산과학회지
    • /
    • 제55권5호
    • /
    • pp.638-644
    • /
    • 2022
  • The measurement of morphological features is essential in aquaculture, fish industry and the management of fishery resources. The measurement of fish requires a large investment of manpower and time. To save time and labor for fish measurement, automated and reliable measurement methods have been developed. Automation was achieved by applying computer vision and machine learning techniques. Recently, machine learning methods based on deep learning have been used for most automatic fish measurement studies. Here, we review the current status of automatic fish measurement with traditional computer vision methods and deep learning-based methods.

건설현장 근로자의 안전모 착용 여부 검출을 위한 컴퓨터 비전 기반 딥러닝 알고리즘의 적용 (Application of Deep Learning Algorithm for Detecting Construction Workers Wearing Safety Helmet Using Computer Vision)

  • 김명호;신성우;서용윤
    • 한국안전학회지
    • /
    • 제34권6호
    • /
    • pp.29-37
    • /
    • 2019
  • Since construction sites are exposed to outdoor environments, working conditions are significantly dangerous. Thus, wearing of the personal protective equipments such as safety helmet is very important for worker safety. However, construction workers are often wearing-off the helmet as inconvenient and uncomportable. As a result, a small mistake may lead to serious accident. For this, checking of wearing safety helmet is important task to safety managers in field. However, due to the limited time and manpower, the checking can not be executed for every individual worker spread over a large construction site. Therefore, if an automatic checking system is provided, field safety management should be performed more effectively and efficiently. In this study, applicability of deep learning based computer vision technology is investigated for automatic checking of wearing safety helmet in construction sites. Faster R-CNN deep learning algorithm for object detection and classification is employed to develop the automatic checking model. Digital camera images captured in real construction site are used to validate the proposed model. Based on the results, it is concluded that the proposed model may effectively be used for automatic checking of wearing safety helmet in construction site.

Improved Inference for Human Attribute Recognition using Historical Video Frames

  • Ha, Hoang Van;Lee, Jong Weon;Park, Chun-Su
    • 반도체디스플레이기술학회지
    • /
    • 제20권3호
    • /
    • pp.120-124
    • /
    • 2021
  • Recently, human attribute recognition (HAR) attracts a lot of attention due to its wide application in video surveillance systems. Recent deep-learning-based solutions for HAR require time-consuming training processes. In this paper, we propose a post-processing technique that utilizes the historical video frames to improve prediction results without invoking re-training or modifying existing deep-learning-based classifiers. Experiment results on a large-scale benchmark dataset show the effectiveness of our proposed method.

Object Detection Using Deep Learning Algorithm CNN

  • S. Sumahasan;Udaya Kumar Addanki;Navya Irlapati;Amulya Jonnala
    • International Journal of Computer Science & Network Security
    • /
    • 제24권5호
    • /
    • pp.129-134
    • /
    • 2024
  • Object Detection is an emerging technology in the field of Computer Vision and Image Processing that deals with detecting objects of a particular class in digital images. It has considered being one of the complicated and challenging tasks in computer vision. Earlier several machine learning-based approaches like SIFT (Scale-invariant feature transform) and HOG (Histogram of oriented gradients) are widely used to classify objects in an image. These approaches use the Support vector machine for classification. The biggest challenges with these approaches are that they are computationally intensive for use in real-time applications, and these methods do not work well with massive datasets. To overcome these challenges, we implemented a Deep Learning based approach Convolutional Neural Network (CNN) in this paper. The Proposed approach provides accurate results in detecting objects in an image by the area of object highlighted in a Bounding Box along with its accuracy.

Object Detection Performance Analysis between On-GPU and On-Board Analysis for Military Domain Images

  • Du-Hwan Hur;Dae-Hyeon Park;Deok-Woong Kim;Jae-Yong Baek;Jun-Hyeong Bak;Seung-Hwan Bae
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권8호
    • /
    • pp.157-164
    • /
    • 2024
  • 본 논문에서는 제한된 자원을 가진 보드에서 딥러닝 기반 검출기 구축에 대한 실현 가능성에 대해 논의한다. 많은 연구에서 고성능 GPU 환경에서 검출기를 평가하지만, 제한된 연산 자원을 가진 보드에서의 평가는 여전히 미비하다. 따라서 본 연구에서는 검출기를 파싱하고 최적화하는 것으로 보드에 딥러닝 기반 검출기를 구현하고 구축한다. 제한된 자원에서의 딥러닝 기반 검출기의 성능을 확인하기 위해, 여러 검출기를 다양한 하드웨어 자원에서 모니터링하고, COCO 검출 데이터 셋에서 On-Board에서의 검출 모델과 On-GPU의 검출 모델을 mAP, 전력 소모량, 실행 속도(FPS) 관점으로 비교 및 분석한다. 그리고 군사 분야에 검출기를 적용한 효과를 고려하기 위해 항공 전투 시나리오를 고려할 수 있는 열화상 이미지로 구성된 자체 데이터 셋에서 검출기를 평가한다. 결과적으로 우리는 본 연구를 통해 On-Board에서 모델을 실행하는 딥러닝 기반 검출기의 강점을 조사하고, 전장 상황에서 딥러닝 기반 검출기가 기여할 수 있음을 보인다.

Research on Local and Global Infrared Image Pre-Processing Methods for Deep Learning Based Guided Weapon Target Detection

  • Jae-Yong Baek;Dae-Hyeon Park;Hyuk-Jin Shin;Yong-Sang Yoo;Deok-Woong Kim;Du-Hwan Hur;SeungHwan Bae;Jun-Ho Cheon;Seung-Hwan Bae
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권7호
    • /
    • pp.41-51
    • /
    • 2024
  • 본 논문에서는 적외선 이미지에서 딥러닝 물체 탐지를 사용하여 유도무기의 표적 탐지 정확도 향상 방법을 연구한다. 적외선 이미지의 특성은 시간, 온도 등의 요인에 의해 영향을 받기 때문에 모델을 학습할 때 다양한 환경에서 표적 객체의 특징을 일관되게 표현하는 것이 중요하다. 이러한 문제를 해결하는 간단한 방법은 적절한 전처리 기술을 통해 적외선 이미지 내 표적 객체의 특징을 강조하고 노이즈를 줄이는 것이다. 그러나, 기존 연구에서는 적외선 영상 기반 딥러닝 모델 학습에서 전처리기법에 관한 충분한 논의가 이루어지지 못했다. 이에, 본 논문에서는 표적 객체 검출을 위한 적외선 이미지 기반 훈련에 대한 이미지 전처리 기술의 영향을 조사하는 것을 목표로 한다. 이를 위해 영상과 이미지의 전역(global) 또는 지역(local) 정보를 활용한 적외선 영상에 대한 전처리인 Min-max normalization, Z-score normalization, Histogram equalization, CLAHE (Contrast Limited Adaptive Histogram Equalization)에 대한 결과를 분석한다. 또한, 각 전처리 기법으로 변환된 이미지들이 객체 검출기 훈련에 미치는 영향을 확인하기 위해 다양한 전처리 방법으로 처리된 이미지에 대해 YOLOX 표적 검출기를 학습하고, 이에 대한 분석을 진행한다. 실험과 분석을 통해 전처리 기법들이 객체 검출기 정확도에 영향을 미친다는 사실을 알게 되었다. 특히, 전처리 기법 중에서도 CLAHE 기법을 사용해 실험을 진행한 결과가 81.9%의 mAP (mean average precision)을 기록하며 가장 높은 검출 정확도를 보임을 확인하였다.

딥러닝 기반의 투명 렌즈 이상 탐지 알고리즘 성능 비교 및 적용 (Comparison and Application of Deep Learning-Based Anomaly Detection Algorithms for Transparent Lens Defects)

  • 김한비;서대호
    • 산업경영시스템학회지
    • /
    • 제47권1호
    • /
    • pp.9-19
    • /
    • 2024
  • Deep learning-based computer vision anomaly detection algorithms are widely utilized in various fields. Especially in the manufacturing industry, the difficulty in collecting abnormal data compared to normal data, and the challenge of defining all potential abnormalities in advance, have led to an increasing demand for unsupervised learning methods that rely on normal data. In this study, we conducted a comparative analysis of deep learning-based unsupervised learning algorithms that define and detect abnormalities that can occur when transparent contact lenses are immersed in liquid solution. We validated and applied the unsupervised learning algorithms used in this study to the existing anomaly detection benchmark dataset, MvTecAD. The existing anomaly detection benchmark dataset primarily consists of solid objects, whereas in our study, we compared unsupervised learning-based algorithms in experiments judging the shape and presence of lenses submerged in liquid. Among the algorithms analyzed, EfficientAD showed an AUROC and F1-score of 0.97 in image-level tests. However, the F1-score decreased to 0.18 in pixel-level tests, making it challenging to determine the locations where abnormalities occurred. Despite this, EfficientAD demonstrated excellent performance in image-level tests classifying normal and abnormal instances, suggesting that with the collection and training of large-scale data in real industrial settings, it is expected to exhibit even better performance.

Deep Learning을 기반으로 한 Feature Extraction 알고리즘의 분석 (Analysis of Feature Extraction Algorithms Based on Deep Learning)

  • 김경태;이용환;김영섭
    • 반도체디스플레이기술학회지
    • /
    • 제19권2호
    • /
    • pp.60-67
    • /
    • 2020
  • Recently, artificial intelligence related technologies including machine learning are being applied to various fields, and the demand is also increasing. In particular, with the development of AR, VR, and MR technologies related to image processing, the utilization of computer vision based on deep learning has increased. The algorithms for object recognition and detection based on deep learning required for image processing are diversified and advanced. Accordingly, problems that were difficult to solve with the existing methodology were solved more simply and easily by using deep learning. This paper introduces various deep learning-based object recognition and extraction algorithms used to detect and recognize various objects in an image and analyzes the technologies that attract attention.

Research on damage detection and assessment of civil engineering structures based on DeepLabV3+ deep learning model

  • Chengyan Song
    • Structural Engineering and Mechanics
    • /
    • 제91권5호
    • /
    • pp.443-457
    • /
    • 2024
  • At present, the traditional concrete surface inspection methods based on artificial vision have the problems of high cost and insecurity, while the computer vision methods rely on artificial selection features in the case of sensitive environmental changes and difficult promotion. In order to solve these problems, this paper introduces deep learning technology in the field of computer vision to achieve automatic feature extraction of structural damage, with excellent detection speed and strong generalization ability. The main contents of this study are as follows: (1) A method based on DeepLabV3+ convolutional neural network model is proposed for surface detection of post-earthquake structural damage, including surface damage such as concrete cracks, spaling and exposed steel bars. The key semantic information is extracted by different backbone networks, and the data sets containing various surface damage are trained, tested and evaluated. The intersection ratios of 54.4%, 44.2%, and 89.9% in the test set demonstrate the network's capability to accurately identify different types of structural surface damages in pixel-level segmentation, highlighting its effectiveness in varied testing scenarios. (2) A semantic segmentation model based on DeepLabV3+ convolutional neural network is proposed for the detection and evaluation of post-earthquake structural components. Using a dataset that includes building structural components and their damage degrees for training, testing, and evaluation, semantic segmentation detection accuracies were recorded at 98.5% and 56.9%. To provide a comprehensive assessment that considers both false positives and false negatives, the Mean Intersection over Union (Mean IoU) was employed as the primary evaluation metric. This choice ensures that the network's performance in detecting and evaluating pixel-level damage in post-earthquake structural components is evaluated uniformly across all experiments. By incorporating deep learning technology, this study not only offers an innovative solution for accurately identifying post-earthquake damage in civil engineering structures but also contributes significantly to empirical research in automated detection and evaluation within the field of structural health monitoring.

객체 탐지 과업에서의 트랜스포머 기반 모델의 특장점 분석 연구 (A Survey on Vision Transformers for Object Detection Task)

  • 하정민;이현종;엄정민;이재구
    • 대한임베디드공학회논문지
    • /
    • 제17권6호
    • /
    • pp.319-327
    • /
    • 2022
  • Transformers are the most famous deep learning models that has achieved great success in natural language processing and also showed good performance on computer vision. In this survey, we categorized transformer-based models for computer vision, particularly object detection tasks and perform comprehensive comparative experiments to understand the characteristics of each model. Next, we evaluated the models subdivided into standard transformer, with key point attention, and adding attention with coordinates by performance comparison in terms of object detection accuracy and real-time performance. For performance comparison, we used two metrics: frame per second (FPS) and mean average precision (mAP). Finally, we confirmed the trends and relationships related to the detection and real-time performance of objects in several transformer models using various experiments.