• Title/Summary/Keyword: deep learning models

Search Result 1,393, Processing Time 0.026 seconds

Comparative Analysis of RNN Architectures and Activation Functions with Attention Mechanisms for Mars Weather Prediction

  • Jaehyeok Jo;Yunho Sin;Bo-Young Kim;Jihoon Moon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.10
    • /
    • pp.1-9
    • /
    • 2024
  • In this paper, we propose a comparative analysis to evaluate the impact of activation functions and attention mechanisms on the performance of time-series models for Mars meteorological data. Mars meteorological data are nonlinear and irregular due to low atmospheric density, rapid temperature variations, and complex terrain. We use long short-term memory (LSTM), bidirectional LSTM (BiLSTM), gated recurrent unit (GRU), and bidirectional GRU (BiGRU) architectures to evaluate the effectiveness of different activation functions and attention mechanisms. The activation functions tested include rectified linear unit (ReLU), leaky ReLU, exponential linear unit (ELU), Gaussian error linear unit (GELU), Swish, and scaled ELU (SELU), and model performance was measured using mean absolute error (MAE) and root mean square error (RMSE) metrics. Our results show that the integration of attentional mechanisms improves both MAE and RMSE, with Swish and ReLU achieving the best performance for minimum temperature prediction. Conversely, GELU and ELU were less effective for pressure prediction. These results highlight the critical role of selecting appropriate activation functions and attention mechanisms in improving model accuracy for complex time-series forecasting.

Generalized On-Device AI Framework for Semantic Segmentation (의미론적 분할을 위한 범용 온디바이스 AI 프레임워크)

  • Jun-Young Hong;Kyung-Jae Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.5
    • /
    • pp.903-910
    • /
    • 2024
  • Complex semantic segmentation tasks are primarily performed in server environments equipped with high-performance graphics hardware such as GPUs and TPUs. This cloud-based AI inference method operates by transmitting processed results to the client. However, this approach is dependent on network communication and raises concerns about privacy infringement during the process of transmitting user data to servers. Therefore, this paper proposes a Generalized On-Device Framework for Semantic Segmentation that can operate in mobile environments with high accessibility to people. This framework supports various semantic segmentation models and enables direct inference in mobile environments through model conversion and efficient memory management techniques. It is expected that this research approach will enable effective execution of semantic segmentation algorithms even in resource-constrained situations such as IoT devices, autonomous vehicles, and industrial robots, which are not cloud computing environments. This is expected to contribute to the advancement of real-time image processing, privacy protection, and network-independent AI application fields.

Comparison of Retaining Wall Displacement Prediction Performance Using Sensor Data (센서 데이터를 활용한 옹벽 변위 예측 성능 비교)

  • Sheilla Wesonga;Jang-Sik Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.5
    • /
    • pp.1035-1040
    • /
    • 2024
  • The main objective of inspecting structures is to ensure the safety of all entities that utilize these structures as cracks in structures if not attended to could lead to serious calamities. With that objective in mind, artificial intelligence (AI) based technologies to assist human inspectors are needed especially for retaining walls in structures. In this paper, we predict the crack displacement of retaining walls using an Polynomial Regressive (PR) analysis model, as well as Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) deep learning models, and compare their performance. For the performance comparison, we apply multi-variable feature inputs, by utilizing temperature and rainfall data that may affect the crack displacement of the retaining wall. The training and inference data were collected through measuring sensors such as inclinometers, thermometers, and rain gauges. The results show that the multi-variable feature model had a MAE of 0.00186, 0.00450 and 0.00842, which outperformed the single variable feature model at 0.00393, 0.00556 and 0.00929 for the polynomial regression model, LSTM model and the GRU model respectively from the evaluation performed.

Estimation of Rice Heading Date of Paddy Rice from Slanted and Top-view Images Using Deep Learning Classification Model (딥 러닝 분류 모델을 이용한 직하방과 경사각 영상 기반의 벼 출수기 판별)

  • Hyeok-jin Bak;Wan-Gyu Sang;Sungyul Chang;Dongwon Kwon;Woo-jin Im;Ji-hyeon Lee;Nam-jin Chung;Jung-Il Cho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.337-345
    • /
    • 2023
  • Estimating the rice heading date is one of the most crucial agricultural tasks related to productivity. However, due to abnormal climates around the world, it is becoming increasingly challenging to estimate the rice heading date. Therefore, a more objective classification method for estimating the rice heading date is needed than the existing methods. This study, we aimed to classify the rice heading stage from various images using a CNN classification model. We collected top-view images taken from a drone and a phenotyping tower, as well as slanted-view images captured with a RGB camera. The collected images underwent preprocessing to prepare them as input data for the CNN model. The CNN architectures employed were ResNet50, InceptionV3, and VGG19, which are commonly used in image classification models. The accuracy of the models all showed an accuracy of 0.98 or higher regardless of each architecture and type of image. We also used Grad-CAM to visually check which features of the image the model looked at and classified. Then verified our model accurately measure the rice heading date in paddy fields. The rice heading date was estimated to be approximately one day apart on average in the four paddy fields. This method suggests that the water head can be estimated automatically and quantitatively when estimating the rice heading date from various paddy field monitoring images.

Estimation for Ground Air Temperature Using GEO-KOMPSAT-2A and Deep Neural Network (심층신경망과 천리안위성 2A호를 활용한 지상기온 추정에 관한 연구)

  • Taeyoon Eom;Kwangnyun Kim;Yonghan Jo;Keunyong Song;Yunjeong Lee;Yun Gon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.207-221
    • /
    • 2023
  • This study suggests deep neural network models for estimating air temperature with Level 1B (L1B) datasets of GEO-KOMPSAT-2A (GK-2A). The temperature at 1.5 m above the ground impact not only daily life but also weather warnings such as cold and heat waves. There are many studies to assume the air temperature from the land surface temperature (LST) retrieved from satellites because the air temperature has a strong relationship with the LST. However, an algorithm of the LST, Level 2 output of GK-2A, works only clear sky pixels. To overcome the cloud effects, we apply a deep neural network (DNN) model to assume the air temperature with L1B calibrated for radiometric and geometrics from raw satellite data and compare the model with a linear regression model between LST and air temperature. The root mean square errors (RMSE) of the air temperature for model outputs are used to evaluate the model. The number of 95 in-situ air temperature data was 2,496,634 and the ratio of datasets paired with LST and L1B show 42.1% and 98.4%. The training years are 2020 and 2021 and 2022 is used to validate. The DNN model is designed with an input layer taking 16 channels and four hidden fully connected layers to assume an air temperature. As a result of the model using 16 bands of L1B, the DNN with RMSE 2.22℃ showed great performance than the baseline model with RMSE 3.55℃ on clear sky conditions and the total RMSE including overcast samples was 3.33℃. It is suggested that the DNN is able to overcome cloud effects. However, it showed different characteristics in seasonal and hourly analysis and needed to append solar information as inputs to make a general DNN model because the summer and winter seasons showed a low coefficient of determinations with high standard deviations.

A Study on the Prediction Model of Stock Price Index Trend based on GA-MSVM that Simultaneously Optimizes Feature and Instance Selection (입력변수 및 학습사례 선정을 동시에 최적화하는 GA-MSVM 기반 주가지수 추세 예측 모형에 관한 연구)

  • Lee, Jong-sik;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.147-168
    • /
    • 2017
  • There have been many studies on accurate stock market forecasting in academia for a long time, and now there are also various forecasting models using various techniques. Recently, many attempts have been made to predict the stock index using various machine learning methods including Deep Learning. Although the fundamental analysis and the technical analysis method are used for the analysis of the traditional stock investment transaction, the technical analysis method is more useful for the application of the short-term transaction prediction or statistical and mathematical techniques. Most of the studies that have been conducted using these technical indicators have studied the model of predicting stock prices by binary classification - rising or falling - of stock market fluctuations in the future market (usually next trading day). However, it is also true that this binary classification has many unfavorable aspects in predicting trends, identifying trading signals, or signaling portfolio rebalancing. In this study, we try to predict the stock index by expanding the stock index trend (upward trend, boxed, downward trend) to the multiple classification system in the existing binary index method. In order to solve this multi-classification problem, a technique such as Multinomial Logistic Regression Analysis (MLOGIT), Multiple Discriminant Analysis (MDA) or Artificial Neural Networks (ANN) we propose an optimization model using Genetic Algorithm as a wrapper for improving the performance of this model using Multi-classification Support Vector Machines (MSVM), which has proved to be superior in prediction performance. In particular, the proposed model named GA-MSVM is designed to maximize model performance by optimizing not only the kernel function parameters of MSVM, but also the optimal selection of input variables (feature selection) as well as instance selection. In order to verify the performance of the proposed model, we applied the proposed method to the real data. The results show that the proposed method is more effective than the conventional multivariate SVM, which has been known to show the best prediction performance up to now, as well as existing artificial intelligence / data mining techniques such as MDA, MLOGIT, CBR, and it is confirmed that the prediction performance is better than this. Especially, it has been confirmed that the 'instance selection' plays a very important role in predicting the stock index trend, and it is confirmed that the improvement effect of the model is more important than other factors. To verify the usefulness of GA-MSVM, we applied it to Korea's real KOSPI200 stock index trend forecast. Our research is primarily aimed at predicting trend segments to capture signal acquisition or short-term trend transition points. The experimental data set includes technical indicators such as the price and volatility index (2004 ~ 2017) and macroeconomic data (interest rate, exchange rate, S&P 500, etc.) of KOSPI200 stock index in Korea. Using a variety of statistical methods including one-way ANOVA and stepwise MDA, 15 indicators were selected as candidate independent variables. The dependent variable, trend classification, was classified into three states: 1 (upward trend), 0 (boxed), and -1 (downward trend). 70% of the total data for each class was used for training and the remaining 30% was used for verifying. To verify the performance of the proposed model, several comparative model experiments such as MDA, MLOGIT, CBR, ANN and MSVM were conducted. MSVM has adopted the One-Against-One (OAO) approach, which is known as the most accurate approach among the various MSVM approaches. Although there are some limitations, the final experimental results demonstrate that the proposed model, GA-MSVM, performs at a significantly higher level than all comparative models.

Development of Water Level Prediction Models Using Deep Neural Network in Mountain Wetlands (딥러닝을 활용한 산지습지 수위 예측 모형 개발)

  • Kim, Donghyun;Kim, Jungwook;Kwak, Jaewon;Necesito, Imee V.;Kim, Jongsung;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.106-112
    • /
    • 2020
  • Wetlands play an important function and role in hydrological, environmental, and ecological, aspects of the watershed. Water level in wetlands is essential for various analysis such as for the determination of wetland function and its effects on the environment. Since several wetlands are ungauged, research on wetland water level prediction are uncommon. Therefore, this study developed a water level prediction model using multiple regression analysis, principal component regression analysis, artificial neural network, and DNN to predict wetland water level. Geumjeong-Mountain Wetland located in Yangsan-city, Gyeongsangnam-do province was selected as the target area, and the water level measurement data from April 2017 to July 2018 was used as the dependent variable. On the other hand, hydrological and meteorological data were used as independent variables in the study. As a result of evaluating the predictive power, the water level prediction model using DNN was selected as the final model as it showed an RMSE value of 6.359 and an NRMSE value of 18.91%. This research study is believed to be useful especially as a basic data for the development of wetland maintenance and management techniques using the water level of the existing unmeasured points.

Applicability Evaluation for Discharge Model Using Curve Number and Convolution Neural Network (Curve Number 및 Convolution Neural Network를 이용한 유출모형의 적용성 평가)

  • Song, Chul Min;Lee, Kwang Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.2
    • /
    • pp.114-125
    • /
    • 2020
  • Despite the various artificial neural networks that have been developed, most of the discharge models in previous studies have been developed using deep neural networks. This study aimed to develop a discharge model using a convolution neural network (CNN), which was used to solve classification problems. Furthermore, the applicability of CNN was evaluated. The photographs (pictures or images) for input data to CNN could not clearly show the characteristics of the study area as well as precipitation. Hence, the model employed in this study had to use numerical images. To solve the problem, the CN of NRCS was used to generate images as input data for the model. The generated images showed a good possibility of applicability as input data. Moreover, a new application of CN, which had been used only for discharge prediction, was proposed in this study. As a result of CNN training, the model was trained and generalized stably. Comparison between the actual and predicted values had an R2 of 0.79, which was relatively high. The model showed good performance in terms of the Pearson correlation coefficient (0.84), the Nash-Sutcliffe efficiency (NSE) (0.63), and the root mean square error (24.54 ㎥/s).

Seq2Seq model-based Prognostics and Health Management of Robot Arm (Seq2Seq 모델 기반의 로봇팔 고장예지 기술)

  • Lee, Yeong-Hyeon;Kim, Kyung-Jun;Lee, Seung-Ik;Kim, Dong-Ju
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.242-250
    • /
    • 2019
  • In this paper, we propose a method to predict the failure of industrial robot using Seq2Seq (Sequence to Sequence) model, which is a model for transforming time series data among Artificial Neural Network models. The proposed method uses the data of the joint current and angular value, which can be measured by the robot itself, without additional sensor for fault diagnosis. After preprocessing the measured data for the model to learn, the Seq2Seq model was trained to convert the current to angle. Abnormal degree for fault diagnosis uses RMSE (Root Mean Squared Error) during unit time between predicted angle and actual angle. The performance evaluation of the proposed method was performed using the test data measured under different conditions of normal and defective condition of the robot. When the Abnormal degree exceed the threshold, it was classified as a fault, and the accuracy of the fault diagnosis was 96.67% from the experiment. The proposed method has the merit that it can perform fault prediction without additional sensor, and it has been confirmed from the experiment that high diagnostic performance and efficiency are available without requiring deep expert knowledge of the robot.

A Study for Generation of Artificial Lunar Topography Image Dataset Using a Deep Learning Based Style Transfer Technique (딥러닝 기반 스타일 변환 기법을 활용한 인공 달 지형 영상 데이터 생성 방안에 관한 연구)

  • Na, Jong-Ho;Lee, Su-Deuk;Shin, Hyu-Soung
    • Tunnel and Underground Space
    • /
    • v.32 no.2
    • /
    • pp.131-143
    • /
    • 2022
  • The lunar exploration autonomous vehicle operates based on the lunar topography information obtained from real-time image characterization. For highly accurate topography characterization, a large number of training images with various background conditions are required. Since the real lunar topography images are difficult to obtain, it should be helpful to be able to generate mimic lunar image data artificially on the basis of the planetary analogs site images and real lunar images available. In this study, we aim to artificially create lunar topography images by using the location information-based style transfer algorithm known as Wavelet Correct Transform (WCT2). We conducted comparative experiments using lunar analog site images and real lunar topography images taken during China's and America's lunar-exploring projects (i.e., Chang'e and Apollo) to assess the efficacy of our suggested approach. The results show that the proposed techniques can create realistic images, which preserve the topography information of the analog site image while still showing the same condition as an image taken on lunar surface. The proposed algorithm also outperforms a conventional algorithm, Deep Photo Style Transfer (DPST) in terms of temporal and visual aspects. For future work, we intend to use the generated styled image data in combination with real image data for training lunar topography objects to be applied for topographic detection and segmentation. It is expected that this approach can significantly improve the performance of detection and segmentation models on real lunar topography images.