• Title/Summary/Keyword: deep geological sediments

Search Result 14, Processing Time 0.02 seconds

A proposal of marine geophysical exploration techniques for offshore plant installation (해양플랜트 설치를 위한 해양물리탐사 기법 제안)

  • Ha, Ji-Ho;Ko, Hwi-Kyung;Cho, Hyen-Suk;Chung, Woo-Keen;Ahn, Dang;Shin, Sung-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.242-251
    • /
    • 2013
  • Recently, while global concern over offshore resources exploration and development is being increased rapidly, offshore plant industry is highlighted as an industry of high added value. Along with this global trend, domestic concern over offshore plant development is being increased as well. In the overseas case, a marine geotechnical survey guideline for confirming characteristics of seabed sediments is available at the time of installation of offshore plant but such guideline is not available in our country. In this study, survey techniques fit for domestic marine environment was applied according to overseas guideline at southern coastal area, Korea. Among the marine geophysical survey techniques being proposed abroad, magnetic survey and seabed photograph were excluded. However, highly reliable data analysis was enabled for marine geophysical survey, which includes in-situ coring investigation and laboratory soil test. In addition, continuous ocean current survey was included to find scour potential due to the current around the offshore plant. Although coring depth is not so deep, we predicted geological structure through the analysis of amplitude features of seismic data. Characteristics of seabed sediments cold be obtained regionally and directly through combined analysis of marine geophysical survey data and coring data.

Aquifer Characterization Using Seismic Data on the Aquistore CCS Project, Canada (캐나다 아퀴스토어 탄성파자료를 통한 이산화탄소 지중저장 연구지역 대수층 특성화)

  • Cheong, Snons;Kim, Byoung-Yeop;Shinn, Young Jae;Lee, Ho-Yong;Park, Myung-Ho
    • Economic and Environmental Geology
    • /
    • v.47 no.6
    • /
    • pp.625-633
    • /
    • 2014
  • The Aquistore project is the world's first commercial capture, transportation, utilization and storage project of post-combustion $CO_2$ from a coal-fired thermo electric power plant, and the proposed storage is a saline aquifer at a depth of about 3,500 m. Deep saline aquifer, compared to hydrocarbon reservoir, provides the great volumetric potential for storage of $CO_2$ anywhere in the world, therefore the research results from the project may be exported globally to other sites. Geological $CO_2$ storage characterization for saline aquifer instead of hydrocarbon reservoir needs to estimate the geophysical properties of subsurface geology. This study calculated the geophysical property of water-saturated formation by applying amplitude variation analysis developed from oil and gas exploration. We correlated horizon tops at the well logs to seismic traveltime of 1,815 and 1,857 ms as Winnipeg and Deadwood formations. Gradient analysis from seismic traces showed correlation coefficient of 45 - 81 % on amplitude variation with respect to incident angle. Crossplot of intercept and gradient shows the inverse proportional trend which represents typical water saturated sediments. Product attribute of intercept and gradient described the base of wet sediment. Poisson's ratio change attribute increased at the top of target area satisfying with wet sediment and decreased at the top of basement in a dry rock bed.

Analysis of Hydrocarbon Trap in the Southwestern Margin of the Ulleung Basin, East Sea (동해 울릉분지 남서주변부의 탄화수소 트랩 분석)

  • Lee, Minwoo;Kang, Moo-Hee;Yoon, Youngho;Yi, Bo-Yeon;Kim, Kyong-O;Kim, Jinho;Park, Myong-ho;Lee, Keumsuk
    • Economic and Environmental Geology
    • /
    • v.48 no.4
    • /
    • pp.301-312
    • /
    • 2015
  • A commercial gas field was found in the southwestern continental shelf of the Ulleung Basin, East Sea in the late 1990s. To develop additional gas field, an exploration well was drilled through the coarse infill of submarine canyon near the gas field, but it was uneconomic to develop hydrocarbons. Using newly acquired deep seismic reflection and previous well data, we have identified additional geological structure which has hydrocarbon potentials below submarine canyons in the southwestern margin of the basin. Based on the interpretation of the deep seismic reflection and well data, the sequences of the study area can be classified into the syn-rift megasequence(MS1), post-rift megasequence(MS2), syn-compressional megasequence(MS3), and post-compressional megasequence(MS4) in relation to the tectonic events. MS1, deposited simultaneously with the basin formation before the middle Miocene, is characterized by chaotic seismic facies with low- to moderate-amplitude and low frequency reflections. MS2 comprises laterally continuous, low- to moderate-amplitude reflections, showing progradational stacking patterns due to high rates of sediment supply during basin expansion in the middle Miocene. MS3 is mainly composed of continuous reflections with high amplitude and moderate- to high-frequency which are interpreted as coarse-grained sediments. The coarse-grained sediments of MS3 sequence is widely truncated by several submarine canyons which filled with fine-grained sediment of MS4 to form a stratigraphic trap of hydrocarbon. Therefore, the reservoir and seal of the hydrocarbon trap in the study area are coarse-grained sediment of MS3 and submarine canyon filled with fine-grained sediment of MS4, respectively. A flat-spot seismic anomaly, which may indicate the presence of hydrocarbon, is observed within the stratigraphic trap.

Geology of Athabasca Oil Sands in Canada (캐나다 아사바스카 오일샌드 지질특성)

  • Kwon, Yi-Kwon
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • As conventional oil and gas reservoirs become depleted, interests for oil sands has rapidly increased in the last decade. Oil sands are mixture of bitumen, water, and host sediments of sand and clay. Most oil sand is unconsolidated sand that is held together by bitumen. Bitumen has hydrocarbon in situ viscosity of >10,000 centipoises (cP) at reservoir condition and has API gravity between $8-14^{\circ}$. The largest oil sand deposits are in Alberta and Saskatchewan, Canada. The reverves are approximated at 1.7 trillion barrels of initial oil-in-place and 173 billion barrels of remaining established reserves. Alberta has a number of oil sands deposits which are grouped into three oil sand development areas - the Athabasca, Cold Lake, and Peace River, with the largest current bitumen production from Athabasca. Principal oil sands deposits consist of the McMurray Fm and Wabiskaw Mbr in Athabasca area, the Gething and Bluesky formations in Peace River area, and relatively thin multi-reservoir deposits of McMurray, Clearwater, and Grand Rapid formations in Cold Lake area. The reservoir sediments were deposited in the foreland basin (Western Canada Sedimentary Basin) formed by collision between the Pacific and North America plates and the subsequent thrusting movements in the Mesozoic. The deposits are underlain by basement rocks of Paleozoic carbonates with highly variable topography. The oil sands deposits were formed during the Early Cretaceous transgression which occurred along the Cretaceous Interior Seaway in North America. The oil-sands-hosting McMurray and Wabiskaw deposits in the Athabasca area consist of the lower fluvial and the upper estuarine-offshore sediments, reflecting the broad and overall transgression. The deposits are characterized by facies heterogeneity of channelized reservoir sands and non-reservoir muds. Main reservoir bodies of the McMurray Formation are fluvial and estuarine channel-point bar complexes which are interbedded with fine-grained deposits formed in floodplain, tidal flat, and estuarine bay. The Wabiskaw deposits (basal member of the Clearwater Formation) commonly comprise sheet-shaped offshore muds and sands, but occasionally show deep-incision into the McMurray deposits, forming channelized reservoir sand bodies of oil sands. In Canada, bitumen of oil sands deposits is produced by surface mining or in-situ thermal recovery processes. Bitumen sands recovered by surface mining are changed into synthetic crude oil through extraction and upgrading processes. On the other hand, bitumen produced by in-situ thermal recovery is transported to refinery only through bitumen blending process. The in-situ thermal recovery technology is represented by Steam-Assisted Gravity Drainage and Cyclic Steam Stimulation. These technologies are based on steam injection into bitumen sand reservoirs for increase in reservoir in-situ temperature and in bitumen mobility. In oil sands reservoirs, efficiency for steam propagation is controlled mainly by reservoir geology. Accordingly, understanding of geological factors and characteristics of oil sands reservoir deposits is prerequisite for well-designed development planning and effective bitumen production. As significant geological factors and characteristics in oil sands reservoir deposits, this study suggests (1) pay of bitumen sands and connectivity, (2) bitumen content and saturation, (3) geologic structure, (4) distribution of mud baffles and plugs, (5) thickness and lateral continuity of mud interbeds, (6) distribution of water-saturated sands, (7) distribution of gas-saturated sands, (8) direction of lateral accretion of point bar, (9) distribution of diagenetic layers and nodules, and (10) texture and fabric change within reservoir sand body.

  • PDF