• Title/Summary/Keyword: deep drawing

Search Result 470, Processing Time 0.029 seconds

An Experimental Study on the Forming Characteristics of Pre-Coated Metals (피복된 판재의 성형 특성에 관한 실험적 연구)

  • 김호윤;왕신일;배원병
    • Transactions of Materials Processing
    • /
    • v.9 no.5
    • /
    • pp.463-468
    • /
    • 2000
  • An experimental study has been performed to investigate the forming characteristics of pre-coated metals(PCMs) widely used in domestic appliances through Erichsen tests and deep drawing tests. Erichsen tests are performed to find out the forming limits of seven pre-coated metals in normal conditions. Rectangular deep-drawing tests are carried out to know the effects of die materials and blank metals on forming loads and surface defects of final PCM products. In the deep-drawing test, four die materials [STD11(TiCN), STD11, STD11(TD), AMPCO] are used. In the Erichsen test, the forming limits of PCMs are obtained from flaking or crack of pre-coated films and lower than those of base metals. In respect of surface roughness and forming load, STD11(TD) and AMPCO materials are superior to my other die-materials used in the deep-drawing test.

  • PDF

A Study on Improvement of Formability for Deep Drawing Process (디프 드로잉 공정의 성형성 향상에 관한 연구)

  • 최병근
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.70-76
    • /
    • 1999
  • Recently most of researches for deep drawing process using sheet metal have been performed on the formability of axisymmetric shape but there have not been any concrete reports on the formability of non-axisymmetric shape In addition the conventional shape radius of the punch and die has been determined by the trying-and-error using industrial experimence and post processing test and only approximate shape radius of the punch and die has been determined by the trying-and-error using industrial experience and post processing test and only approximate shape radius of the punch and die has been present So in this study the optimal shape radius of the punch and die in deep drawing process with biaxisymmetric blank shape would be proposed. Through the deep drawing experiment it is found that in order to obtain the optimal products especially shape radius of the punch and die in all processes is very important.

  • PDF

A Stud on Punch and Die Shape Radii of Non-Axisymmetric Deep Drawing Product (비축대층 디프 드로잉 제품의 펀치 및 다이 형상반경에 관한 연구)

  • 배원락
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.92-95
    • /
    • 2000
  • In order to obtain the optimal products in deep drawing process elliptical deep drawing tests were carried out with several shape radii of the punch and die. As parameters on testing shape radii of the punch and die were selected, In addition the conventional shape radii have been determined by trial=and-error using industrial experience and post processing test and only approximate shape radii of the punch and die have been presented. The optimal shape radii of the punch and die in elliptical deep drawing process with biaxisymmetric blank shape are proposed. In this study we suggest the appropriate conditions to be applicable to the catual manufacturing processes through the experiment and finite element method.

  • PDF

Mechanical Pressure Drive with Enhanced Downward Velocity Characteristics (슬라이드의 하강속도특성을 개선한 기계프레스의 구동부)

  • 구형욱;최호준;황병복
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.110-120
    • /
    • 1996
  • A crank-slider mechanism is driven by the rotating disk with are crank-pin guide to be applied to the deep drawing and cold forging presses. Load characteristics for different presses are summarized to see the basics of deep drawing of sheet metal and forging in terms of load-stroke relationship. Several types of conventional deep drawing presses are also shown to be compared with the ratating disk-types press. Kinematic performances by thearc guide driving mechanism are anlayzed in terms of load capaicty, stroke, and slide velocity characteristics, and they are compared with those by conventional driving , e.g. Niagara-typepress and so on. Kinematically better performances is shown by arc guide drive than those by conventional ones. The new driving mechanism is also proven to be one of the best for mass production press in terms of short cycle time. Possible applications of the arc guide press to deep drawing and cold forging work are in terms of kinematics and load capacity.

  • PDF

A CAD/CAM System for Axisymmetric Deep Drawing Processes (축대칭 디프-드로잉 공정의 CAD/CAM 시스템)

  • Park, S.B.;Choi, Y.;Kim, B.M.;Choi, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.6
    • /
    • pp.27-33
    • /
    • 1996
  • In this study, a CAD/CAM system for axisymmetric deep drawing processes has been developed. An approach to the system is based on the knowledge based system. Under the environment of CAD/CAM software of Personal Designer, the system has been written in UPL. The geometries of intermediate and final object in deep drawing process, including processes parameters are input for the CAD/CAM system. The input data can be obtained from the results of Pro_Deep. The parts drawing of die sets for each process is generated in tool design module of the CAD/CAM system. Also. the die assembly drawings can be obtained. NC commands for machining of the part can be generated in the developed CAD/CAM system.

  • PDF

An Experimental Study on Optimization of Blank Shape in Elliptical Deep Drawing Process (타원형 디프 드로잉 공정에서 블랭크 형상 최적화에 관한 실험적 연구)

  • Park, Dong-Hwan;Choi, Byung-Keun;Park, Sang-Bong;Kang, Sung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.101-108
    • /
    • 1999
  • Most of researches for deep drawing process have been performed on the formability of axisymmetric blank, but there is an insufficient study on the formability of non-axisymmetric blank. In addition, the conventional blank shape has been determined by the trial-and-error method using industrial experience and post processing test. Therefore only approximated shape of the blank can be presented. In this study, the optimal blank shape and concrete drafting method in deep drawing process with biaxisymmetric elliptical shape is proposed. Through the deep drawing experiment, it is found that the optimal blank shape gives the most uniform thickness of the products in the first process

  • PDF

Experimental Study on the Multi-stage Deep Drawing Process (다단계 ?드로잉 가공에 대한 실험적 연구)

  • 박민호;김상진;서대교
    • Transactions of Materials Processing
    • /
    • v.5 no.4
    • /
    • pp.288-296
    • /
    • 1996
  • A method of determining an optimum blank shape for non-circular deep drawing process is extended to the multi-stage deep drawing process. As an example concentric two-stage square deep drawing process is considered and the ideal blank shape with uniform cup height and without flange part after the process is constructed by the backward tracing of rigid plastic FEM. The conventional square blank shapes are also adopted for the comparison of two cases. As a result it is confirmed that the drawn products with better thickness strain distribution and deeper cup depth could be obtained by the suggested ideal blank shapes.

  • PDF

An Experimental Study on Improvement of Formability for Elliptical Deep Drawing Process (타원형 디프 드로잉 공정의 성형성 향상에 관한 실험적 연구)

  • 박동환;박상봉;강성수
    • Transactions of Materials Processing
    • /
    • v.9 no.2
    • /
    • pp.120-127
    • /
    • 2000
  • Recently, most of researches for sheet metal deep drawing process have been performed on the formability of axisymmetric shape, but there are not any concrete reports on the formability of non-axisymmetric shape. In addition, the conventional shape radius of the punch and die has been determined by trial-and-error using industrial experience and post processing test, and only approximate shape radius of the punch and die has been presented. In this study, the optimal shape radius of the punch and die in deep drawing process with biaxisymmetric blank shape is proposed. Through the deep drawing experiment, especially it is found that in order to obtain the optimal products, and improvement of formability can be researched by selection of such punch and die shape radius that gives an adequate thickness distribution in all processes.

  • PDF

A Study on the Forming Velocity Effect on the Warm Deep Drawing of AZ31 Sheet (성형속도에 따른 AZ31판재의 온간 디프드로잉 성형성 연구)

  • Kim, K.D.;Kim, H.K.;Kim, J.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.234-237
    • /
    • 2007
  • Deep drawing of magnesium alloy sheet is conducted at elevated temperatures($200{\sim}300^{\circ}C$) to improve the press formability because of low formability at room temperature. Then magnesium alloy sheet formability is known to be very sensitive to the strain rate. In this paper, we conducted warm deep drawing tests of magnesium alloy AZ31 sheet for various punch velocities. We examined the forming velocity effect on the deep drawing formability and the correlation with the tensile test result.

  • PDF

A Study on the Development of Forming Process for a Compressor Shell Body (압축기용 쉘바디의 성형공정 개발에 관한 연구)

  • Kim, Min-Jeong;Oh, Won-Jung;Shin, Dong-Cho;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.8
    • /
    • pp.635-640
    • /
    • 2016
  • The shell body is the main exterior part of a compressor, and production of shell bodies has increased along with a growing demand for air conditioners, refrigerators, air compressors, and so on. Cracks frequently occur in the process of welding a shell body. In this study, a deep drawing process for creating a shell body from a blank is developed. The technique consists of a four-step deep drawing and a two-step trimming process. Analysis is performed by DEFORM software to examine the safety of the deep drawing and trimming processes. The deep drawing process for the shell body developed in this study would have wide application in many industrial fields.